RAG with LLama 3 (Olama), LlamaIndex, Streamlit

Building a robust RAG application involves a lot of moving parts, the architecture diagram presented below illustrates some of the key components & how they interact with each other, followed by detailed descriptions of each component, we’ve used:

– LlamaIndex for orchestration

– Streamlit for creating a Chat UI

– Meta AI’s Llama3 as the LLM

– “BAAI/bge-large-en-v1.5” for embedding generation

1. Custom knowledge base

Custom Knowledge Base: A collection of relevant and up-to-date information that serves as a foundation for RAG. It can be a database, a set of documents, or a combination of both. In this case it’s a PDF provided by you that will be used as a source of truth to provide answers to user queries.

2. Chunking

Chunking is the process of breaking down a large input text into smaller pieces. This ensures that the text fits the input size of the embedding model and improves retrieval efficiency.

Following code will load pdf documents from a directory specified by the user using LlamaIndex’s SimpleDirectoryReader:

3. Embeddings model

A technique for representing text data as numerical vectors, which can be input into machine learning models. The embedding model is responsible for converting text into these vectors.

4. Vector databases

A collection of pre-computed vector representations of text data for fast retrieval and similarity search, with capabilities like CRUD operations, metadata filtering, and horizontal scaling. By default, LlamaIndex uses a simple in-memory vector store that’s great for quick experimentation.

5. User chat interface

A user-friendly interface that allows users to interact with the RAG system, providing input query and receiving output. We have built a streamlit app to do the same. The code for it can be found in app.py

6. Query engine

The query engine takes a query string to use it to fetch relevant context and then sends them both as a prompt to the LLM to generate a final natural language response. The LLM used here is Llama3 which is served locally, thanks to Ollama The final response is displayed in the user interface.

7. Prompt template

A custom prompt template is use to refine the response from LLM & include the context as well:

Conclusion

In this studio, we developed a Retrieval Augmented Generation (RAG) application that allows you to “Chat with your docs.” Throughout this process, we learned about LlamaIndex, the go to library for building RAG applications & Ollama for locally serving LLMs, in this case we served Llama3 that was recently released by MetaAI.

We also explored the concept of prompt engineering to refine and steer the responses of our LLM. These techniques can similarly be applied to anchor your LLM to various knowledge bases, such as documents, PDFs, videos, and more.

Top 15 đề xuất công cụ AI tạo nội dung miễn phí: Phiên bản tháng 12 năm 2023

Xin chào!

Tôi là Kakeya, đại diện Công ty Cổ phần Scuti.

Scuti – chúng tôi là đơn vị chuyên phát triển phần mềm offshore và lab-based tại Việt Nam, tận dụng sức mạnh của trí tuệ nhân tạo ( Generative AI). Chúng tôi cung cấp các dịch vụ bao gồm phát triển và tư vấn toàn diện về AI tạo sinh. Gần đây, chúng tôi đã nhận được nhiều yêu cầu phát triển hệ thống tích hợp với AI tạo sinh, phản ánh nhu cầu ngày càng tăng về các giải pháp sáng tạo dựa trên AI.

Công nghệ AI đang phát triển hàng ngày, và trong lĩnh vực này, ‘AI tạo sinh’ đã đặc biệt nhận được nhiều sự chú ý trong những năm gần đây. AI tạo sinh là công nghệ tự động tạo ra nội dung như văn bản, hình ảnh, âm nhạc và video bằng cách sử dụng AI. Mặc dù có vẻ phức tạp khi nhìn vào lần đầu, nhưng có rất nhiều công cụ AI tạo sinh miễn phí dễ sử dụng ngay cả cho người mới bắt đầu. Bằng cách tận dụng hiệu quả những công cụ này, bạn có thể đạt được nhiều lợi ích như tăng cường sự sáng tạo, ý tưởng, tiết kiệm thời gian và chi phí, và tạo ra nội dung cá nhân hóa.

Bài viết này giới thiệu cách sử dụng cơ bản của những công cụ như vậy và nêu bật 15 công cụ AI tạo sinh miễn phí đang nhận được nhiều sự chú ý nhất tính đến tháng 12 năm 2023.


Những điều cơ bản và Sức hút của AI tạo sinh

AI tạo sinh là gì? Kiến thức cơ bản

AI tạo sinh là công nghệ cho phép trí tuệ nhân tạo tự động tạo ra nội dung. Công nghệ này cho phép AI tự tạo ra các loại nội dung khác nhau, bao gồm văn bản, hình ảnh, âm nhạc và video.

Ví dụ, công cụ AI tạo sinh văn bản có thể được sử dụng cho một loạt mục đích như viết bài và blog, tạo bài đăng trên mạng xã hội, và tạo nội dung tiếp thị. Một trong những dịch vụ nổi tiếng, ChatGPT, sử dụng một mô hình ngôn ngữ lớn gọi là GPT để sản xuất văn bản gần như không thể phân biệt với văn bản do con người tạo ra.

Những công cụ này, mặc dù có vẻ phức tạp khi nhìn vào lần đầu, nhưng thực tế lại rất thân thiện với người dùng và được thiết kế để dễ dàng sử dụng bởi người mới bắt đầu. Công cụ AI tạo sinh miễn phí mang lại nhiều lợi ích, bao gồm tăng cường sáng tạo, ý tưởng, tiết kiệm thời gian và chi phí, và tạo ra nội dung tùy chỉnh.

Sự phát triển của công nghệ AI và vai trò của AI tạo sinh

Công nghệ AI đã đạt được những bước tiến đáng kể trong những năm gần đây. Đặc biệt, AI tạo sinh đã phát triển nhanh chóng trong năm qua, khiến năm 2023 có thể được coi là “năm của AI tạo sinh.”

Đặc biệt, ChatGPT đã phát triển đáng kể về mặt chức năng và độ chính xác của nội dung mà nó tạo ra, cảm thấy như đã biến đổi thành một sản phẩm hoàn toàn khác.

Hơn nữa, nhiều dịch vụ sử dụng AI tạo sinh đã xuất hiện, cho thấy sự phát triển nhanh chóng của công nghệ AI tạo sinh.

Sự phát triển của AI tạo sinh đã mở ra những khả năng mới cho hiệu quả trong các nhiệm vụ sáng tạo, cung cấp nội dung chất lượng cao nhanh chóng, và mở rộng trí tưởng tượng của con người. Tuy nhiên, nó cũng đã đưa ra những thách thức mới, như vấn đề bản quyền và đạo đức và xác định tính xác thực của nội dung do AI tạo ra. Hy vọng rằng sự phát triển và ứng dụng lành mạnh của AI tạo sinh sẽ tiếp tục diễn ra trong khi giải quyết những thách thức này.

Các cách sử dụng AI tạo sinh với các công cụ miễn phí

Với sự phát triển của AI tạo sinh, đã xuất hiện một loạt công cụ miễn phí. Bằng cách tận dụng hiệu quả những công cụ này, cả cá nhân và doanh nghiệp đều có thể cải thiện đáng kể năng suất làm việc của mình.

Công Cụ Tạo Văn Bản AI: Công cụ tạo văn bản AI, như ChatGPT, có thể sản xuất các loại nội dung văn bản khác nhau, bao gồm nội dung bài viết và mã nguồn chương trình. Điều này có thể giảm đáng kể thời gian dành cho việc tạo nội dung.

Công Cụ Tạo Hình Ảnh AI: Công cụ tạo hình ảnh AI, như Stable Diffusion, có thể tạo ra hình ảnh và tác phẩm nghệ thuật chất lượng cao từ văn bản, cho phép ngay cả những người không có kỹ năng hoặc kiến thức về thiết kế (như tôi) dễ dàng tạo ra quảng cáo banner hoặc hình ảnh nổi bật cho bài viết blog.

Công Cụ Tạo Video và Âm Nhạc AI: Công cụ tạo video và âm nhạc AI cho phép tạo tự động video và âm nhạc, cung cấp các lựa chọn đa dạng cho chiến dịch tiếp thị và ngành công nghiệp giải trí.

Thật ngạc nhiên khi một số dịch vụ AI tạo sinh này lại có sẵn miễn phí, nhưng công cụ miễn phí đặc biệt mang lại lợi ích cho các doanh nghiệp cá nhân và doanh nghiệp nhỏ. Công cụ AI tạo sinh không chỉ tăng cường sự sáng tạo và năng suất mà còn cho phép tạo ra những hình thức nghệ thuật và nội dung mới, mang lại những hiểu biết quý giá cho con người.

Top 15 công cụ AI tạo sinh miễn phí của năm 2023

ChatGPT – AI tạo văn bản đa năng

Tên Dịch Vụ:

ChatGPT

URL:

https://openai.com/chatgpt

Tổng quan dịch vụ:

ChatGPT là một dịch vụ AI cho phép tạo văn bản, tạo hình ảnh, và tương tác giọng nói. Gói miễn phí cung cấp quyền truy cập vào mô hình GPT-3.5 và có sẵn trên các nền tảng Web, iOS, và Android. Các tính năng bao gồm tạo tài liệu, tạo hình ảnh, phân tích hình ảnh, và duyệt web (lấy nội dung trang web), với giao tiếp diễn ra dưới dạng cuộc trò chuyện. Gói trả phí cho phép sử dụng GPT-4, mang lại thời gian phản hồi nhanh hơn và khả năng sử dụng các tính năng tiên tiến hơn.

Ứng Dụng:

ChatGPT rất có ích cho cá nhân và doanh nghiệp cần tạo văn bản tự động, tạo tài liệu, hoặc ý tưởng cho hình ảnh và minh họa. Dịch vụ này miễn phí và hỗ trợ cải thiện các nhiệm vụ sáng tạo và sáng kiến.

Các trường hợp sử dụng cụ thể:

  • Được sử dụng bởi các chuyên viên tiếp thị để tối ưu hóa quá trình viết copy cho các chiến dịch.
  • Được sử dụng bởi các nghệ sĩ và minh họa viên để phác thảo ý tưởng cho các tác phẩm nghệ thuật mới.

Stable Diffusion – AI Tạo hình ảnh từ văn bản

Tên Dịch Vụ:

Stable Diffusion

URL:

https://stablediffusionweb.com/

Tổng quan dịch vụ:

Stable Diffusion là một mô hình học sâu tạo ra hình ảnh giống như ảnh chụp hoặc tranh vẽ từ văn bản. Dịch vụ miễn phí này sản xuất hình ảnh chất lượng cao dựa trên chỉ dẫn được cung cấp trong văn bản nhập vào. Phiên bản mới nhất, Stable Diffusion XL, sử dụng một mạng lưới U-Net lớn hơn, cho phép tạo ra hình ảnh chất lượng cao hơn. Tạo hình ảnh cho mục đích thương mại cũng được cho phép.

Ứng dụng:

Stable Diffusion lý tưởng cho cá nhân và doanh nghiệp, như các nhà minh họa, nhà thiết kế, và chuyên viên tiếp thị, những người cần hình ảnh chất lượng cao. Chỉ bằng cách nhập văn bản, bạn có thể nhanh chóng và miễn phí tạo ra nội dung hình ảnh.

Các trường hợp sử dụng cụ thể:

  • Được sử dụng bởi các nhà minh họa để tạo ra thiết kế nhân vật hoặc khái niệm cho các cảnh.
  • Được sử dụng bởi các chuyên viên tiếp thị để nhanh chóng tạo nội dung hình ảnh cho mạng xã hội hoặc quảng cáo.

Writesonic – Công cụ tạo nội dung bằng AI

Tên Dịch Vụ:

Writesonic

URL:

https://writesonic.com/ai-article-writer-generator

Tổng quan dịch vụ:

Writesonic là công cụ tạo bài viết AI sử dụng GPT-4 để sản xuất các bài viết tối ưu hóa SEO phù hợp với phong cách độc đáo của thương hiệu bạn. Nó có thể tạo ra các bài viết dựa trên sự thật trong vòng 5 phút, kết hợp thông tin từ kết quả tìm kiếm Google để tạo ra blog đáng tin cậy. Gói miễn phí cung cấp 10,000 từ, với các gói khác nhau dành cho freelancer, đội nhóm nhỏ và doanh nghiệp, mỗi gói cung cấp các tính năng và số lượng từ khác nhau.

Ứng dụng:

Writesonic lý tưởng cho các đội ngũ tiếp thị, đại lý quảng cáo, và freelancer. Người dùng có thể tải lên hướng dẫn thương hiệu và tài liệu để tạo ra blog độc đáo, tối ưu hóa SEO. Nó còn hỗ trợ đa ngôn ngữ để đáp ứng nhu cầu đa dạng.

Các trường hợp sử dụng cụ thể:

  • Được sử dụng bởi các đội ngũ tiếp thị để nhanh chóng tạo nội dung cho chiến dịch.
  • Được sử dụng bởi freelancer để tạo bài viết cho blog hoặc website của họ và tối ưu hóa SEO.

Jasper – Công cụ hỗ trợ viết lách bằng AI

Tên Dịch Vụ:

Jasper

URL:

https://www.jasper.ai/

Tổng quan dịch vụ:

Jasper là trợ lý AI tạo sinh được thiết kế đặc biệt cho các marketer doanh nghiệp. Nền tảng này cung cấp các chức năng liên quan đến tất cả các khía cạnh của việc tạo nội dung và tiếp thị, như hướng dẫn giọng điệu và phong cách thương hiệu, xây dựng chiến lược và tối ưu hóa hiệu suất. Nó cũng tích hợp quản lý dự án, phân tích thông tin, và khả năng API. Gói trả phí cung cấp các tính năng bổ sung như phân tích giọng điệu thương hiệu, nhiều bảng người dùng, tải lên tài sản kiến thức, chiến dịch tức thì, hợp tác đội nhóm và quản lý người dùng.

Ứng dụng:

Jasper được thiết kế cho các doanh nghiệp tìm kiếm kết quả nhanh chóng và hiệu quả hơn trong việc sản xuất nội dung và tiếp thị. Với sự hỗ trợ của AI, nó cho phép tạo ra nội dung chất lượng cao phản ánh giọng điệu của thương hiệu, hỗ trợ trong việc tối ưu hóa các chiến dịch tiếp thị.

Các trường hợp sử dụng cụ thể:

  • Khi đội ngũ tiếp thị cần nhanh chóng tạo và tối ưu hóa SEO cho blog hoặc bài đăng trên mạng xã hội của thương hiệu.
  • Khi doanh nghiệp cần tạo ra quảng cáo hiệu quả, bài đăng blog, và chiến dịch email cho một sản phẩm mới được ra mắt trong thời gian ngắn.

Wordtune – Công cụ cải thiện văn bản bằng AI

Tên Dịch Vụ:

Wordtune

URL:

https://www.wordtune.com/

Tổng quan dịch vụ:

Wordtune là công cụ AI tạo sinh với chức năng tạo văn bản. Nó có thể sử dụng miễn phí và cho phép việc viết lại (rewrite), cộng tác viết, tạo dựng dựa trên AI, tạo tóm tắt, và sửa đổi văn bản. Trong kế hoạch trả phí, số lần sử dụng các chức năng này sẽ được tăng lên. Kế hoạch Plus cung cấp 10 lần viết lại và cộng tác, 3 lần tạo dựng và tóm tắt dựa trên AI, không giới hạn sửa đổi văn bản và tính năng đề xuất. Kế hoạch không giới hạn cho phép sử dụng không giới hạn các chức năng này và kế hoạch Unlimited cung cấp hỗ trợ cao cấp. Kế hoạch Dành Cho Doanh Nghiệp bổ sung thêm nhiều tính năng, bao gồm quản lý tài khoản chuyên dụng và thanh toán tổng hợp.

Ứng dụng:

Wordtune phù hợp cho mọi người thường xuyên viết văn bản, bao gồm sinh viên, giáo viên, nhà văn và doanh nhân. Với sự hỗ trợ của AI, công cụ này giúp tạo ra văn bản chất lượng cao một cách hiệu quả, cải thiện chất lượng nội dung đồng thời tiết kiệm thời gian.

Các trường hợp sử dụng cụ thể:

  • Khi sinh viên muốn tạo ra bài báo cáo hoặc luận văn hấp dẫn và đúng ngữ pháp hơn.
  • Khi doanh nhân cần tạo tài liệu trình bày hoặc văn bản kinh doanh một cách nhanh chóng và hiệu quả.

Scribe – Công cụ tạo hướng dẫn tự động

Tên Dịch Vụ:

Scribe

URL:

https://scribehow.com/

Tổng quan dịch vụ:

Scribe là công cụ tự động tạo hướng dẫn làm việc sử dụng AI tạo sinh. Nó tương thích với ứng dụng web, ứng dụng di động và ứng dụng để bàn, tự động chụp màn hình. Nó cũng tự động tạo tiêu đề và mô tả cho hướng dẫn, tạo hình ảnh GIF, làm mờ thông tin mật và bao gồm nhiều tính năng tiện ích khác. Phiên bản miễn phí chỉ tương thích với ứng dụng web, trong khi phiên bản trả phí cung cấp khả năng tương thích với ứng dụng di động/máy tính và sử dụng các tính năng đã nêu trên.

Ứng dụng:

Scribe hữu ích cho các quản lý, nhà giáo dục và nhân viên IT muốn tiết kiệm thời gian và làm việc hiệu quả hơn trong tổ chức của họ. Với sự hỗ trợ của AI, việc tạo tài liệu trở nên dễ dàng, giảm thời gian trả lời các câu hỏi lặp đi lặp lại và cho phép tập trung vào các nhiệm vụ quan trọng hơn.

Các trường hợp sử dụng cụ thể:

  • Khi trưởng nhóm IT muốn dạy các thành viên trong đội cách sử dụng một công cụ phần mềm mới một cách hiệu quả.
  • Khi nhân viên nhân sự muốn tiết kiệm thời gian và truyền đạt thông tin một cách rõ ràng khi tạo hướng dẫn đào tạo cho nhân viên mới.

Cursor – Môi trường phát triển chuyên biệt cho tạo mã tự động

Tên Dịch Vụ:

Cursor

URL:

https://cursor.sh/

Tổng quan dịch vụ:

Cursor là một trình soạn thảo mã lập trình sử dụng AI, bao gồm chức năng tự động tạo/sửa mã nguồn gọi là Command K cùng với tính năng trò chuyện. Trong phần trò chuyện, bạn có thể đặt câu hỏi như “Mã này có lỗi không?” để nhận được trải nghiệm tương tự như lập trình cặp. Nó cung cấp khả năng đặt câu hỏi về từng đoạn mã nguồn cụ thể hoặc toàn bộ dự án, sự tự động gỡ lỗi bởi AI, và sự hỗ trợ trong việc hiểu tài liệu kỹ thuật. Các chức năng cơ bản có sẵn miễn phí, nhưng có giới hạn về khả năng của GPT và số lần sử dụng. Các kế hoạch trả phí cung cấp GPT nhanh hơn và sử dụng nhiều hơn, cho phép lập trình thoải mái hơn.

Ứng dụng:

Cursor phù hợp với các nhà phát triển phần mềm và lập trình viên cần phản hồi nhanh chóng và hiệu quả cho việc chỉnh sửa mã và sửa lỗi. Sức mạnh của AI có thể tăng cường hiệu suất làm việc và cải thiện năng suất lập trình.

Các trường hợp sử dụng cụ thể:

  • Khi lập trình viên cần nhanh chóng xác định và sửa chữa lỗi trong mã.
  • Khi nhà phát triển phần mềm sử dụng nó để học ngôn ngữ lập trình mới và viết mã một cách hiệu quả.

GitHub Copilot – Trợ lý lập trình AI

Tên Dịch Vụ:

GitHub Copilot

URL:

https://github.com/features/copilot

Tổng quan dịch vụ:

GitHub Copilot là công cụ hỗ trợ lập trình bằng AI. Nó thực hiện việc hoàn thiện mã trong IDE, nâng cao năng suất của nhà phát triển. Nó hỗ trợ tạo mã mới, chỉnh sửa mã đã có, và phát hiện lỗi, cho phép viết mã chất lượng cao, cũng như xem xét đến vấn đề lỗ hổng. Ngoài ra, nó có thể tự động tạo bình luận cho Pull Requests, cho phép chia sẻ hiệu quả ý định thay đổi giữa các lập trình viên trong môi trường phát triển nhóm. Dịch vụ này được cung cấp miễn phí chỉ cho một số người dùng nhất định, như sinh viên đã xác minh, giáo viên, và những người đóng góp nổi bật cho OSS, và chủ yếu là một dịch vụ trả phí.

Ứng dụng:

GitHub Copilot là công cụ lý tưởng cho các nhà phát triển mong muốn cải thiện hiệu quả và chất lượng trong việc tạo mã. Nó hữu ích trong nhiều tình huống phát triển, như thiết kế tính năng mới hoặc xác định lỗi.

Các trường hợp sử dụng cụ thể:

  • Khi phát triển tính năng mới, sử dụng GitHub Copilot để nhận đề xuất mã và hình thành ý tưởng.
  • Trong quá trình debug, sử dụng GitHub Copilot để nhanh chóng tìm ra giải pháp cho các vấn đề.

Fliki – AI Tạo video từ bài viết blog

Service Name:

Fliki

URL:

https://fliki.ai/

Tổng quan dịch vụ:

Fliki là công cụ AI tạo video từ văn bản. Bằng cách chỉ định loại video bạn muốn tạo bằng văn bản, AI sẽ tự động tạo video chỉ trong bốn bước đơn giản. Ngoài văn bản, bài viết blog, tweet và PowerPoint cũng có thể được sử dụng làm đầu vào cho việc tạo video tự động. Gói miễn phí cho phép sử dụng các tính năng cơ bản nhưng giới hạn tạo tối đa 5 phút nội dung video mỗi tháng và cũng giới hạn chất lượng video. Các gói trả phí cho phép tạo tối đa 180 phút video hàng tháng, sử dụng nhiều giọng đọc hơn, video full HD, không watermark, và các tính năng bổ sung như sao chép giọng nói, avatar AI, và truy cập API trong gói cao cấp.

Ứng dụng:

Fliki là công cụ cho phép tạo video hấp dẫn về mặt thị giác với chất lượng giọng nói chuyên nghiệp một cách dễ dàng. Nó cho phép chuyển đổi nội dung của blog và bài trình bày thành định dạng video, tiếp cận một lượng khán giả rộng lớn hơn.

Các trường hợp sử dụng cụ thể:

  • Các blogger và nhà tiếp thị chuyển đổi bài viết blog của họ thành nội dung video để chia sẻ trên mạng xã hội.
  • Các nhà giáo dục và chuyên gia doanh nghiệp chuyển đổi bài trình bày thành định dạng video để sử dụng làm tài liệu giáo dục hoặc tài liệu công ty.

VEED – Trình chỉnh sửa video AI

Service Name:

VEED.IO

URL:

https://www.veed.io/

Tổng quan dịch vụ:

VEED.IO là trình chỉnh sửa video AI giúp việc chỉnh sửa video trực tuyến trở nên dễ dàng hơn. Nó tự động tạo avatar, giọng nói, lời thoại, phụ đề và video. Chỉ với một cú nhấp chuột, bạn có thể tạo video, bao gồm các chức năng như tạo phụ đề tự động và loại bỏ tiếng ồn nền. Nó cho phép sử dụng avatar AI giống hệt con người để nói chuyện trong video. Gói miễn phí cung cấp các tính năng chỉnh sửa video cơ bản nhưng có hạn chế về thời lượng video và kích thước tệp. Các gói trả phí mang lại các lợi ích như tăng giới hạn, cải thiện chất lượng video và âm thanh, loại bỏ watermark, và truy cập các tính năng dịch thuật và phân tích.

Ứng dụng:

VEED.IO phù hợp với cá nhân và doanh nghiệp muốn tạo video chất lượng cao một cách nhanh chóng và dễ dàng. Nó có thể được sử dụng cho nhiều mục đích bao gồm tiếp thị mạng xã hội, đào tạo, e-learning, giao tiếp cuộc họp và bán hàng.

Các trường hợp sử dụng cụ thể:

  • Quản lý mạng xã hội tạo video có phụ đề bằng cách sử dụng AI để tăng cường tương tác với khán giả.
  • Các huấn luyện viên và giáo viên nhanh chóng tạo video cho tài liệu đào tạo và giáo dục để truyền đạt thông tin rõ ràng đến người xem.

Starryai – AI Tạo hình ảnh giống nghệ thuật

Service Name:

starryai

URL:

https://starryai.com/

Tổng quan dịch vụ:

starryai là dịch vụ chuyên về tạo hình ảnh nghệ thuật trong số các AI tạo hình ảnh. Nó cho phép tạo ra hình ảnh thông qua việc nhập các dấu hiệu văn bản, chọn lựa phong cách, và điều chỉnh các tham số khác nhau, với khả năng tạo ra tới năm hình ảnh mỗi ngày miễn phí. Phiên bản miễn phí cho phép tạo hình ảnh nhanh chóng và số lượng nhiều hơn, với các tùy chọn tùy chỉnh linh hoạt hơn.

Ứng dụng:

starryai phù hợp với cá nhân và doanh nghiệp muốn sử dụng avatar độc đáo cho hình ảnh đại diện hoặc tài liệu tiếp thị. Ngoài ra, bằng cách kết hợp hình ảnh với phong cách nghệ thuật AI, có thể tạo ra một nhân cách trực tuyến độc đáo.

Các trường hợp sử dụng cụ thể:

  • Người dùng mạng xã hội sử dụng avatar AI độc đáo làm hình ảnh đại diện.
  • Chuyên viên tiếp thị sử dụng avatar được tạo bởi AI trong các chiến dịch hoặc tài liệu quảng cáo.

Soundraw – Công cụ sáng tác âm nhạc AI

Service Name:

SOUNDRAW

URL:

https://soundraw.io/

Tổng quan dịch vụ:

SOUNDRAW là dịch vụ tạo âm nhạc sử dụng AI tạo sinh để tạo và tùy chỉnh âm nhạc theo nhu cầu của người dùng. Dịch vụ cung cấp một gói miễn phí cho phép tạo âm nhạc không giới hạn, và gói Người Tạo với giá $16.99 mỗi tháng, cho phép tải xuống không giới hạn và sử dụng thương mại nhạc nền cho trò chơi, TV, radio, v.v. Gói Nghệ Sĩ, với giá $29.99 mỗi tháng, cho phép phân phối âm nhạc lên các nền tảng như Spotify và Apple Music, cũng như giữ bản quyền. Gói API, với giá $500 mỗi tháng, cho phép tích hợp công nghệ AI của SOUNDRAW vào nền tảng của bạn.

Ứng dụng:

SOUNDRAW phù hợp với các nhà sáng tạo và nghệ sĩ muốn sử dụng âm nhạc làm nền cho video, podcast, trò chơi, mạng xã hội, hoặc làm bản nhạc của riêng họ. Nó cho phép sử dụng thương mại và âm nhạc do AI tạo ra có thể sử dụng mà không lo lắng về bản quyền.

Các trường hợp sử dụng cụ thể:

  • Các nhà sáng tạo YouTube và podcaster sử dụng âm nhạc do SOUNDRAW tạo ra làm nhạc nền cho video hoặc podcast.
  • Các nghệ sĩ sáng tác âm nhạc với SOUNDRAW và phân phối nó trên các nền tảng như Spotify và Apple Music để kiếm tiền.

Speechify – AI Chuyển đổi văn bản thành âm thanh

Service Name:

Speechify

URL:

https://speechify.com/

Tổng quan dịch vụ:

Speechify là dịch vụ Chuyển đổi Văn bản Thành Âm Thanh sử dụng AI tạo sinh để chuyển đổi văn bản thành âm thanh. Gói miễn phí cung cấp 10 giọng đọc chuẩn, tốc độ phát lại tối đa 1x, và khả năng chuyển đổi văn bản thành âm thanh. Gói trả phí ($139 mỗi năm) bao gồm hơn 30 giọng đọc chất lượng cao, tự nhiên, hỗ trợ hơn 20 ngôn ngữ, quét văn bản in (chụp ảnh và đọc văn bản trong hình ảnh), đọc to, tốc độ phát lại tới 5x, và các tính năng bỏ qua và nhập khẩu.

Ứng dụng:

Speechify là dịch vụ giúp thu thập thông tin và học tập hiệu quả cho các doanh nhân, sinh viên, và nhà nghiên cứu thường xuyên đọc sách và làm việc với tài liệu. Thu thập thông tin qua âm thanh cho phép học tập và làm việc nhanh chóng và linh hoạt hơn.

Các trường hợp sử dụng cụ thể:

  • Sinh viên nghe sách giáo khoa hoặc bài báo dưới dạng âm thanh để ôn tập.
  • Các doanh nhân nghe các tài liệu quan trọng khi đang di chuyển.

CoeFont – AI Tạo giọng nói dựa trên văn bản

Service Name:

CoeFont

URL:

https://coefont.cloud/en

Tổng quan dịch vụ:

CoeFont là dịch vụ AI tạo sinh biến đổi giọng nói đa dạng và độc đáo thành âm thanh sống động, hữu ích cho việc lồng tiếng và cải thiện khả năng tiếp cận. CoeFont Voice Hub là thư viện giọng nói số, bao gồm các giọng nói số chất lượng cao của người nổi tiếng. Ngoài ra, thông qua tính năng Voice Changer, bạn có thể thử nghiệm các giọng nói hoặc giọng điệu khác nhau trong các buổi phát trực tiếp, podcast và cuộc họp trực tuyến. Hơn nữa, tính năng Cross-Lingual TTS cho phép chuyển đổi giọng nói thành các giọng nói số có khả năng nói nhiều ngôn ngữ.

Ứng dụng:

CoeFont là dịch vụ có giá trị cho các nhà sáng tạo, Vtuber, diễn viên lồng tiếng, người dùng metaverse, YouTuber, và những ai muốn số hóa giọng nói của mình hoặc tạo nội dung đa ngôn ngữ. Sử dụng giọng nói số giúp mở rộng biểu đạt và cải thiện khả năng tiếp cận.

Các trường hợp sử dụng cụ thể:

  • YouTuber sử dụng các giọng nói hoặc giọng điệu khác nhau cho việc lồng tiếng video.
  • Vtuber giao tiếp với khán giả bằng nhiều ngôn ngữ khác nhau trong các buổi phát trực tiếp.

Notion – Nền tảng quản lý và tổ chức kiến thức

Service Name:

Notion

URL:

https://www.notion.so/product

Tổng quan dịch vụ:

Notion là nền tảng tập trung vào việc tạo tài liệu, quản lý dự án, và tổ chức thông tin. Dịch vụ này cho phép quản lý kiến thức, tổ chức các dự án phức tạp, và tạo ghi chú và tài liệu đa năng. Ngoài ra, Notion AI cung cấp các tính năng trả lời câu hỏi về tài liệu đã tạo, hỗ trợ viết, dịch thuật đa ngôn ngữ, và tự động tạo nội dung trong bảng. Notion có kế hoạch miễn phí cho phép tạo không gian làm việc, tích hợp với các nền tảng bên ngoài như Slack, và các tính năng phân tích cơ bản, nhưng Notion AI có chi phí bổ sung, $10/thành viên hàng tháng cho kế hoạch miễn phí, và $8/thành viên hàng tháng cho các kế hoạch trả phí.

Ứng dụng:

Notion hữu ích cho các doanh nhân, giáo viên, và nhà sáng tạo cần tạo tài liệu, tổ chức thông tin, và quản lý dự án. Nó cung cấp không gian làm việc để thúc đẩy chia sẻ và cộng tác trong nhóm. Ngoài ra, sự hỗ trợ của AI giúp tối ưu hóa việc tạo tài liệu và giao tiếp đa ngôn ngữ, cho phép sản xuất nội dung chất lượng cao hơn.

Các trường hợp sử dụng cụ thể:

  • Đội ngũ doanh nghiệp chia sẻ tiến độ dự án và quản lý công việc một cách hiệu quả.
  • Giáo viên tổ chức tài liệu giảng dạy và thúc đẩy cộng tác với sinh viên.

Top 15 Recommended Free AI Generation Tools: December 2023 Edition

Greetings,

I am Kakeya, the representative of Scuti Jsc.

At Scuti, we specialize in offshore and lab-based development in Vietnam, leveraging the power of generative AI. Our services include not only development but also comprehensive generative AI consulting. Recently, we have been privileged to receive numerous requests for system development integrated with generative AI, reflecting the growing demand for innovative AI-driven solutions.

AI technology is evolving daily, and among these advancements, “generative AI” has been particularly highlighted in recent years. Generative AI is a technology that automatically generates content such as text, images, music, and videos using AI. While it may seem challenging at first glance, there are many free generative AI tools available that are easy for beginners to use. By effectively utilizing these tools, one can reap various benefits such as enhanced creativity, idea generation, time and cost savings, and the creation of personalized content.

In this article, we will introduce 15 of the most noteworthy free generative AI tools as of December 2023, along with basic usage methods for these tools.


The Basics and Appeal of Generative AI

What is Generative AI? An Explanation of the Basics

Generative AI is a technology where artificial intelligence automatically creates content. This technology allows AI to automatically generate various types of content, including text, images, music, and videos.

For example, text generation AI tools can be used for a wide range of purposes, such as writing articles and blogs, creating social media posts, and producing marketing content. One well-known service, ChatGPT, utilizes a large language model called GPT to generate text that is almost indistinguishable from what humans create.

While these tools might seem complex at first glance, they are actually very user-friendly and designed to be easy for beginners to use. Free generative AI tools offer numerous benefits, including enhanced creativity, idea generation, time and cost savings, and the creation of customized content.

The Evolution of AI Technology and the Role of Generative AI

AI technology has made remarkable progress in recent years. In particular, generative AI has rapidly advanced over the past year, making 2023 truly “the year of generative AI.”

Specifically, ChatGPT has significantly evolved in terms of functionality and the accuracy of the content generated by generative AI since its release, transforming into a completely different product.

Furthermore, numerous services utilizing generative AI have emerged, highlighting the rapid development of generative AI technology.

With the evolution of generative AI, new possibilities are opening up for streamlining creative tasks, quickly providing high-quality content, and expanding human imagination. However, this also brings new challenges such as copyright and ethical issues, and the identification of the authenticity of AI-generated content. It is hoped that the healthy development and application of generative AI will progress while addressing these challenges.

Ways to Utilize Generative AI with Free Tools

With the evolution of generative AI, a variety of free tools have emerged. By effectively leveraging these tools, both individuals and businesses can dramatically improve their productivity.

Text Generation AI Tools: Text generation AI tools, such as ChatGPT, can produce various types of text content, including article content and program source code. This can significantly reduce the time spent on content creation.

Image Generation AI Tools: Image generation AI tools, like Stable Diffusion, can create high-quality images and artworks from text, allowing even those without design skills or knowledge (like myself) to easily create banner ads or eye-catching images for blog articles.

Video and Music Generation AI Tools: Video and music generation AI tools enable the automatic creation of videos and music, offering various options for marketing campaigns and the entertainment industry.

It is surprising that some of these generative AI services are available for free, but free tools particularly provide advantages for individual merchants and small businesses. Generative AI tools can not only enhance creativity and productivity but also enable new forms of art and content creation, offering valuable insights to humans.

Top 15 Free Generative AI Tools of 2023

ChatGPT – Versatile Text Generation AI

Service Name:

ChatGPT

URL:

https://openai.com/chatgpt

Service Overview:

ChatGPT is an AI service that enables text generation, image generation, and voice interaction. The free plan provides access to the GPT-3.5 model and is available on Web, iOS, and Android platforms. Its features include document generation, image creation, image analysis, and browsing (retrieving web page contents), with interactions taking place in a chat format. The paid plan allows for the use of GPT-4, offering faster response times and the ability to use more advanced features.

Applications:

ChatGPT is extremely beneficial for individuals and businesses that require the automatic generation of text, document creation, or ideas for images and illustrations. It is available for free and supports the enhancement of creative tasks and ideation.

Specific Use Cases:

  • Marketers use it to streamline campaign copywriting.
  • Artists and illustrators use it to come up with new concepts for artworks.

Stable Diffusion – AI for Generating Images from Text

Service Name:

Stable Diffusion

URL:

https://stablediffusionweb.com/

Service Overview:

Stable Diffusion is a deep learning model that generates images that look like photographs or paintings from text. This free service produces high-quality images based on the instructions provided in the text input. The latest version, Stable Diffusion XL, features a larger U-Net backbone network, allowing for the generation of even higher quality images. Image generation for commercial purposes is also permitted.

Applications:

Stable Diffusion is ideal for individuals and businesses, such as illustrators, designers, and marketing professionals, who need high-quality images. By simply entering text, you can quickly and freely generate visual content.

Specific Use Cases:

  • Illustrators use it to create character designs and scene concepts.
  • Marketers use it to quickly create visual content for social media and advertisements.

Writesonic – Content Creation Tool Powered by AI

Service Name:

Writesonic

URL:

https://writesonic.com/ai-article-writer-generator

Service Overview:

Writesonic is an article generation AI that leverages GPT-4 to produce SEO-optimized articles tailored to your brand’s unique style. It can create fact-based articles within 5 minutes, integrating information from Google search results to generate reliable blogs. The free plan provides 10,000 words, with different plans available for freelancers, small teams, and enterprises, each offering varying features and word counts.

Applications:

Writesonic is ideal for marketing teams, advertising agencies, and freelancers. Users can upload their brand guidelines and documents to generate unique, SEO-optimized blogs. It also features multi-language support to meet a wide range of needs.

Specific Use Cases:

  • The marketing team uses it to quickly create content for campaigns
  • Freelancers use it to generate articles for their blogs or websites and optimize for SEO.

Jasper – Writing Support AI Tool

Service Name:

Jasper

URL:

https://www.jasper.ai/

Service Overview:

Jasper is a generative AI assistant designed specifically for corporate marketers. This platform offers functions related to all aspects of content creation and marketing, such as brand voice and style guides, strategy formulation, and performance optimization. It also features project management, insight analysis, and API capabilities. The paid plan provides additional features like brand voice analysis, multiple user sheets, knowledge asset uploads, instant campaigns, team collaboration, and user management.

Applications:

Jasper is designed for companies seeking quicker and more effective outcomes in content production and marketing. With AI support, it enables the rapid creation of high-quality content that reflects the brand’s voice, aiding in the optimization of marketing campaigns.

Specific Use Cases:

  • When marketing teams need to quickly create and SEO-optimize the brand’s blog or social media posts.
  • When a company needs to create effective advertisements, blog posts, and email campaigns for a new product launch in a short amount of time.

Wordtune – AI Tool for Improving Text

Service Name:

Wordtune

URL:

https://www.wordtune.com/

Service Overview:

Wordtune is a generative AI tool with text creation capabilities. It is available for free use and enables rewriting, co-writing, AI prompts, summary creation, and text correction. The paid plans increase the number of uses for these features. The Plus plan offers 10 rewrites and co-writing instances, 3 AI prompts and summaries, unlimited text correction, and suggestion features. The Unlimited plan allows for unlimited use of these features, and the Unlimited plan includes premium support. The Business plan adds several additional features, including a dedicated account manager and consolidated billing.

Applications:

Wordtune is suitable for everyone who frequently writes text, including students, teachers, writers, and business professionals. With AI support, it enables the efficient creation of higher quality text, improving content quality while saving time.

Specific Use Cases:

  • When students want to create more engaging and grammatically correct texts for reports or essays.
  • When business professionals need to quickly and effectively create materials for presentations or business documents.

Scribe – Automatic Manual Creation Tool

Service Name:

Scribe

URL:

https://scribehow.com/

Service Overview:

Scribe is a tool that automatically generates work manuals using generative AI. It is compatible with web apps, mobile apps, and desktop apps, automatically capturing screens. It also automatically generates manual titles and descriptions, creates GIF images, blurs confidential information, and includes various other convenient features. The free version is only compatible with web apps, while the paid version offers mobile/desktop app compatibility and the use of the aforementioned features.

Applications:

Scribe is useful for managers, educators, and IT personnel who want to save time and work more efficiently within their organizations. With AI, documentation can be easily created, reducing the time spent answering repetitive questions and allowing for focus on more important tasks.

Specific Use Cases:

  • When an IT team leader wants to efficiently teach team members how to use a new software tool.
  • When HR personnel want to save time and clearly convey information while creating onboarding manuals for new employees.

Cursor – Development Environment Specialized in Automatic Code Generation

Service Name:

Cursor

URL:

https://cursor.sh/

Service Overview:

Cursor is a code editor that leverages AI, featuring an automatic source code generation/editing function called Command K, along with a chat feature. In the chat, you can ask questions like “Does this code have bugs?” to get an experience similar to pair programming. It provides the capability to ask questions about specific pieces of source code or about the entire project, automatic debugging by AI, and assistance in understanding technical documentation. Basic functionality is available for free, but there are limitations on the capabilities of GPT and the number of uses. Paid plans offer faster GPT and more usage, enabling more comfortable programming.

Applications:

Cursor is suitable for software developers and programmers who need quick and effective responses to code editing and bug fixing. The power of AI can increase work efficiency and improve coding productivity.

Specific Use Cases:

  • When programmers need to quickly identify and correct errors in code.
  • When software developers use it to learn new coding languages and write code efficiently.

GitHub Copilot – AI Coding Assistant

Service Name:

GitHub Copilot

URL:

https://github.com/features/copilot

Service Overview:

GitHub Copilot is a tool that supports coding with AI. It performs code completion within the IDE, enhancing developer productivity. It supports the creation of new code, editing of existing code, and bug discovery, enabling the writing of high-quality code that also considers vulnerabilities. Additionally, it can automatically generate comments for Pull Requests, allowing for efficient sharing of change intentions among programmers in team development settings. This service is offered for free only to certain users, such as verified students, teachers, and prominent OSS contributors, and is generally a paid service.

Applications:

GitHub Copilot is the perfect tool for developers seeking to improve efficiency and quality in code creation. It is useful in various development scenarios, such as designing new features or identifying bugs.

Specific Use Cases:

  • When developing new features, use GitHub Copilot to receive code suggestions and shape ideas.
  • During debugging, use GitHub Copilot to quickly find solutions to problems.

Fliki – AI for Generating Videos from Blog Articles

Service Name:

Fliki

URL:

https://fliki.ai/

Service Overview:

Fliki is an AI tool that creates videos from text. By specifying what kind of video you want to create with text, AI generates the video in just four simple steps. In addition to text, blog articles, tweets, and PowerPoint can be used as inputs for automatic video generation. The free plan allows for the use of basic features but is limited to creating up to 5 minutes of video content per month and also limits video quality. Paid plans enable the creation of up to 180 minutes of video monthly, use of more voice patterns, full HD video, no watermark, and additional features like voice cloning, AI avatars, and API access in the premium plan.

Applications:

Fliki is a tool that enables the easy creation of visually appealing videos with professional-quality voices. It allows for the conversion of blog and presentation content into video format, reaching a wider audience.

Specific Use Cases:

  • Bloggers and marketers converting their blog articles into video content to share on social media.
  • Educators and business professionals converting presentations into video format to use as educational or corporate materials.

VEED – AI Video Editor

Service Name:

VEED.IO

URL:

https://www.veed.io/

Service Overview:

VEED.IO is an AI video editor that simplifies online video editing. It automatically generates avatars, voices, narrations, subtitles, and videos. With just one click, you can create a video, featuring functions such as automatic subtitle generation and background noise removal. It allows you to use human-like AI avatars to speak within the video. The free plan provides basic video editing features but has limitations on video duration and file size. Paid plans offer increased limits, improved video and audio quality, watermark removal, and access to translation and analysis features.

Applications:

VEED.IO is suitable for individuals and businesses who want to quickly and easily create high-quality videos. It can be used for various purposes including social media marketing, training, e-learning, meeting communication, and sales.

Specific Use Cases:

  • Social media managers creating videos with subtitles using AI to enhance audience engagement.
  • Trainers and educators quickly creating videos for training and educational materials to clearly convey information to viewers.

Starryai – AI for Generating Art-like Images

Service Name:

starryai

URL:

https://starryai.com/

Service Overview:

starryai is a service specialized in art generation among image-generating AIs. It allows for the creation of images through the input of text prompts, selection of styles, and adjustment of various parameters, with the ability to generate up to five images per day for free. The free version allows for faster and more numerous image generation, with more flexible customization options.

Applications:

starryai is suitable for individuals and businesses wanting to use unique avatars for profile pictures or marketing materials. Additionally, by combining photos with AI art styles, it’s possible to create a unique online personality.

Specific Use Cases:

  • Social media users using unique AI avatars as their profile pictures.
  • Marketing professionals utilizing AI-generated avatars in campaigns or advertising materials.

Soundraw – AI Music Composition Tool

Service Name:

SOUNDRAW

URL:

https://soundraw.io/

Service Overview:

SOUNDRAW is a music generation service that utilizes generative AI to create and customize music according to the user’s needs. It offers a free plan that allows for the unlimited generation of music, and a Creator plan for $16.99 per month, which enables unlimited downloads and commercial use of background music for games, TV, radio, etc. The Artist plan, at $29.99 per month, allows for the distribution of music to platforms like Spotify and Apple Music, as well as the retention of royalties. The API plan, at $500 per month, enables integration of SOUNDRAW’s AI technology into your own platform.

Applications:

SOUNDRAW is suitable for creators and artists who want to use music as background for videos, podcasts, games, social media, or as their own music tracks. It allows for commercial use, and the music generated by AI can be used without copyright concerns.

Specific Use Cases:

  • YouTube creators and podcasters using music generated by SOUNDRAW as background music for videos or podcasts.
  • Artists creating music with SOUNDRAW and distributing it on platforms like Spotify and Apple Music to monetize.

Speechify – Text to Speech AI

Service Name:

Speechify

URL:

https://speechify.com/

Service Overview:

Speechify is a Text to Speech service that uses generative AI to convert text into speech. The free plan offers 10 standard voices, playback speeds of up to 1x, and the ability to convert text to speech. The paid plan ($139 per year) includes more than 30 high-quality, natural-sounding voices, support for over 20 languages, scanning printed text (such as taking a photo and reading the text within the image), reading aloud, playback speeds of up to 5x, and skip and import features.

Applications:

Speechify is a service that enables efficient information gathering and learning for business professionals, students, and researchers who do a lot of reading and document work. Gathering information through audio allows for quicker and more flexible learning and work.

Specific Use Cases:

  • Students listening to textbooks or papers in audio format for revision.
  • Business professionals listening to important documents while on the move.

CoeFont – Text-based Voice Generation AI

Service Name:

CoeFont

URL:

https://coefont.cloud/en

Service Overview:

CoeFont is a generative AI service that transforms diverse and unique voices into expressive digital audio, useful for voice-overs and enhancing accessibility. CoeFont Voice Hub is a library of digital voices, including high-quality digital voices of celebrities. Additionally, through the Voice Changer feature, you can try different voices or accents during live streams, podcasts, and online meetings. Moreover, the Cross-Lingual TTS feature allows for voice conversion into digital voices capable of speaking multiple languages.

Applications:

CoeFont is a valuable service for creators, Vtubers, voice actors, metaverse users, YouTubers, and others who want to digitalize their own voices or create content in multiple languages. Utilizing digital voices can broaden expression and enhance accessibility.

Specific Use Cases:

  • YouTubers using different accents or voices for video voice-overs.
  • Vtubers communicating with viewers in different languages during live streams.

Notion – Platform for Knowledge Management and Organization

Service Name:

Notion

URL:

https://www.notion.so/product

Service Overview:

Notion is a platform that centralizes document creation, project management, and information organization. The service enables knowledge management, organization of complex projects, and creation of multifunctional notes and documents. Moreover, Notion AI offers features to answer questions about created documents, assist with writing, perform multilingual translations, and automatically generate content in tables. Notion itself has a free plan that allows workspace creation, integration with external platforms like Slack, and basic analytics features, but Notion AI is an additional cost, $10/member per month for the free plan, and $8/member per month for paid plans.

Applications:

Notion is useful for business professionals, educators, and creators who need document creation, information organization, and project management. It provides workspaces to facilitate team sharing and collaboration. Additionally, AI support streamlines document creation and multilingual communication, enabling the production of higher-quality content.

Specific Use Cases:

  • Business teams sharing project progress and managing tasks efficiently.
  • Educators organizing course materials and fostering collaboration with students.

Giới thiệu về AI tạo sinh: Giải thích đơn giản về việc tạo ra văn bản và hình ảnh

Xin chào!

Tôi là Kakeya, đại diện Công ty Cổ phần Scuti.

Scuti – chúng tôi là đơn vị chuyên phát triển phần mềm offshore và lab-based tại Việt Nam, tận dụng sức mạnh của trí tuệ nhân tạo ( Generative AI). Chúng tôi cung cấp các dịch vụ bao gồm phát triển và tư vấn toàn diện về AI tạo sinh. Chúng tôi chuyên về phát triển hệ thống sử dụng AI tạo sinh với các công cụ như Azure OpenAI Service và AWS Bedrock.

AI tạo sinh đề cập đến trí tuệ nhân tạo có thể tự động tạo ra nội dung mới như văn bản, âm thanh và hình ảnh.

Các công cụ như ChatGPT, chẳng hạn, được nhiều người sử dụng rộng rãi như chatbot truy cập miễn phí. Tuy nhiên, AI tạo sinh chưa hoàn hảo và đôi khi có thể tạo ra kết quả không chính xác hoặc không phù hợp.

Do đó, khi sử dụng AI tạo sinh, điều quan trọng là phải lựa chọn dữ liệu huấn luyện cẩn thận, tùy chỉnh các mô hình và có sự giám sát của con người. Chúng ta đang ở trong thời đại mà con người cần làm việc tốt với AI, ghi nhớ những điểm này.

Công nghệ AI tạo sinh đang phát triển nhanh chóng và được dự đoán sẽ tiếp tục cung cấp nhiều cơ hội mới trong tương lai.

Trong bài viết này, tôi muốn giới thiệu những điều cơ bản về AI tạo sinh và một số trường hợp sử dụng cho những độc giả muốn biết về AI tạo sinh.


Kiến thức cơ bản và Ứng dụng của AI tạo sinh: Kỷ nguyên mới của việc tạo ra Văn bản và Hình ảnh

AI tạo sinh: Công cụ sáng tạo nội dung đột phá

AI tạo sinh đang nhanh chóng thu hút sự chú ý như một công nghệ cho phép tạo nội dung mới. Công nghệ này có thể tạo ra nhiều loại nội dung, bao gồm âm thanh, chương trình, hình ảnh, văn bản và video.

Các dịch vụ sử dụng AI tạo sinh, chẳng hạn như ChatGPT, có khả năng tạo ra những nội dung thú vị như nghệ thuật mới, âm nhạc và thế giới ảo. Những ứng dụng này không chỉ giới hạn ở giải trí mà còn được sử dụng cho các mục đích thực tế, chẳng hạn như tạo thiết kế sản phẩm mới và tối ưu hóa quy trình kinh doanh.

Đặc biệt, ChatGPT đang thu hút sự chú ý vì khả năng tạo ra câu trả lời cho các câu hỏi, làm cho nó trở nên phổ biến với nhiều người dùng. Những công cụ này có thể tạo ra các chương trình, bài luận cấp đại học, thơ ca và truyện cười, nhưng chúng cũng có thể tạo ra các kết quả không chính xác hoặc không phù hợp. Do đó, các mô hình này bị ảnh hưởng rất nhiều bởi chất lượng dữ liệu được sử dụng để huấn luyện.

AI tạo sinh là một phần của danh mục rộng lớn hơn của học máy, nhằm bắt chước trí thông minh của con người bằng cách học các mô hình từ một lượng lớn dữ liệu. Trong khi trước đây chủ yếu giới hạn ở các mô hình dự đoán, sự xuất hiện của AI tạo sinh đã bổ sung khả năng tạo ra các hình ảnh hoặc mô tả văn bản theo yêu cầu, thay vì chỉ nhận diện và phân loại ảnh.

Sự phát triển của AI tạo sinh chủ yếu được thực hiện bởi các công ty công nghệ lớn. Các công ty này tuyển dụng các nhà khoa học máy tính và kỹ sư hàng đầu thế giới, với các đại diện tiêu biểu như OpenAI, DeepMind và Meta. Tuy nhiên, việc sử dụng AI tạo sinh cũng đang mở rộng trong thế giới kinh doanh, cho phép tạo nhanh nhiều loại nội dung viết mà có thể được chỉnh sửa để phù hợp với các mục đích cụ thể. Điều này mang lại lợi ích cho nhiều ngành công nghiệp, bao gồm IT và phần mềm.

Cuối cùng, trong khi kết quả của các mô hình AI tạo sinh có thể rất thuyết phục, đôi khi chúng có thể chứa thông tin không chính xác hoặc thiên vị. Những rủi ro này có thể được giảm thiểu bằng cách lựa chọn cẩn thận dữ liệu ban đầu, sử dụng các mô hình chuyên dụng và tùy chỉnh các mô hình tổng quát. Ngoài ra, việc duy trì sự can thiệp của con người cho các quyết định quan trọng và giải quyết các rủi ro đạo đức và pháp lý khi sử dụng các mô hình AI tạo sinh là rất quan trọng.

Các trường hợp sử dụng của ChatGPT: Những khả năng mới trong tạo văn bản

ChatGPT đang mang lại những đổi mới trong lĩnh vực tạo văn bản. Hệ thống này có khả năng tạo ra các câu trả lời cho nhiều loại câu hỏi.

Dựa trên các gợi ý do người dùng cung cấp, dịch vụ này có thể tạo ra nhiều nội dung văn bản đa dạng như chương trình, bài luận cấp đại học, thơ ca và truyện cười.

Ngoài ra, tận dụng khả năng tạo văn bản, ChatGPT có thể được sử dụng để hỏi các câu hỏi hoặc yêu cầu tóm tắt thông tin công khai. Điều này làm giảm đáng kể công sức tìm kiếm thông tin trước đây bằng cách sử dụng nhiều từ khóa khác nhau hoặc hỏi những người có kiến thức. Bây giờ, bạn có thể nhận được cái nhìn tổng quan nhanh chóng chỉ bằng cách hỏi ChatGPT.

ChatGPT hữu ích không chỉ cho mục đích cá nhân mà còn cho các mục đích kinh doanh. Ví dụ, nó có thể được sử dụng để tạo biên bản cuộc họp, phác thảo các đề xuất, bài viết blog, định nghĩa yêu cầu hệ thống, động não ý tưởng và nhiều ứng dụng khác.

Bằng cách tự động hóa một số công việc mà trước đây được thực hiện thủ công với độ chính xác đáng kể, năng suất có thể được cải thiện đáng kể. Ngược lại, không sử dụng hiệu quả ChatGPT trong kinh doanh có thể dẫn đến tổn thất năng suất đáng kể.

Tiềm năng của AI tạo hình ảnh: Ứng dụng trong kinh doanh và giải trí

AI tạo hình ảnh đang thu hút sự chú ý trong cả hai lĩnh vực kinh doanh và giải trí. Công nghệ này cho phép tự động tạo ra nhiều loại hình ảnh khác nhau bởi AI, bao gồm hình ảnh thực tế, hình ảnh nghệ thuật và hình ảnh phong cách anime.

AI tạo hình ảnh đã làm cho các biểu đạt hình ảnh mới mà phương pháp truyền thống không thể tưởng tượng được trở nên khả thi. Trong kinh doanh, nó được sử dụng để tạo mẫu thiết kế sản phẩm và tạo tài liệu tiếp thị, trong khi trong ngành công nghiệp giải trí, nó góp phần tạo ra các hiệu ứng hình ảnh độc đáo cho phim và trò chơi.

Tuy nhiên, chất lượng và tính thực tế của các hình ảnh được tạo ra phụ thuộc vào mô hình AI và dữ liệu huấn luyện được sử dụng, vì vậy cần chú ý đến các khía cạnh này. Lĩnh vực này đang phát triển nhanh chóng và kỳ vọng sẽ còn nhiều khả năng hơn nữa trong tương lai.

Sự tiến hóa của học máy và phát triển mô hình bởi AI

Học máy và phát triển mô hình bởi AI đã trải qua sự tiến hóa đáng kể trong những năm gần đây. Đặc biệt trong lĩnh vực học máy, các mô hình đang học các mẫu từ các bộ dữ liệu khổng lồ, cho phép các cách tiếp cận mà trước đây không thể thực hiện được.

Học máy, trước đây chủ yếu giới hạn ở các mô hình dự đoán, đã mở rộng bao gồm cả việc tạo ra các hình ảnh và văn bản mới với sự xuất hiện của AI tạo sinh. Điều này đã cải thiện độ chính xác của xử lý ngôn ngữ tự nhiên và nhận diện hình ảnh, làm cho việc giải quyết các nhiệm vụ phức tạp hơn trở nên khả thi. Tuy nhiên, những tiến bộ này đòi hỏi các bộ dữ liệu lớn và sức mạnh tính toán tiên tiến, dẫn đến xu hướng các công ty công nghệ lớn dẫn đầu.

Tính ứng dụng và giới hạn của AI tạo sinh: Tác động đến Kinh doanh và Xã hội

Ứng dụng thực tiễn của AI tạo sinh: tối ưu hóa quy trình kinh doanh

AI tạo sinh đóng vai trò quan trọng trong việc tối ưu hóa các quy trình kinh doanh. Bằng cách sử dụng công nghệ này, các công ty có thể nâng cao đáng kể năng suất trong các lĩnh vực như thiết kế sản phẩm, chiến lược tiếp thị và dịch vụ khách hàng.

Đặc biệt, việc tự động tạo văn bản và hình ảnh bởi AI giúp giảm đáng kể thời gian và chi phí cho việc tạo nội dung, mở ra các cơ hội kinh doanh mới trên nhiều ngành công nghiệp khác nhau. Tuy nhiên, khả năng của AI tạo sinh cũng có giới hạn và cần chú ý đến độ chính xác, tính phù hợp và các vấn đề đạo đức của nội dung được tạo ra.

Điều này có nghĩa là các doanh nghiệp cần phân biệt rõ ràng giữa các nhiệm vụ nên do con người thực hiện và những nhiệm vụ có thể giao cho AI tạo sinh, dẫn đến nhu cầu xem xét và tối ưu hóa lại các quy trình kinh doanh dựa trên tiền đề này.

Khi việc tối ưu hóa quy trình kinh doanh với giả định giao một số nhiệm vụ cho AI tạo sinh tiến triển, năng suất của các tổ chức sẽ tăng lên đáng kể.

Kết quả không chính xác và các biện pháp đối phó: Thách thức của AI tạo sinh

AI tạo sinh có nhiều tiềm năng, nhưng cũng có thể tạo ra kết quả không chính xác. Mặc dù văn bản có thể trông rất tự nhiên, nhưng đôi khi nó có thể cung cấp các câu trả lời không chính xác về mặt thực tế. Vấn đề này phần lớn xuất phát từ chất lượng và thiên vị của dữ liệu được sử dụng để huấn luyện AI.

Chẳng hạn, ChatGPT có thể không giải được các bài toán cơ bản (tác giả đã từng gặp các câu trả lời sai về các bài toán cộng đơn giản và không thể tính diện tích tam giác nhiều lần) hoặc cung cấp các phản hồi phản ánh thiên vị trong nội dung trực tuyến liên quan đến giới tính hoặc chủng tộc.

Để giải quyết các thách thức này, cần phải chọn lọc cẩn thận dữ liệu huấn luyện và tùy chỉnh các mô hình từ góc độ kỹ thuật. Từ góc độ người dùng, điều quan trọng là không nên tin tưởng hoàn toàn vào đầu ra của AI và cần có sự xác nhận của con người đối với kết quả cuối cùng. Cách tiếp cận này giúp nâng cao độ chính xác và tính phù hợp của nội dung do AI tạo ra.

Các quan ngại đạo đức và quản lý rủi ro: Các biện pháp phòng ngừa khi sử dụng AI tạo sinh

Việc sử dụng AI tạo sinh liên quan đến các quan ngại đạo đức quan trọng và quản lý rủi ro. Các mô hình AI có thể phản ánh các thiên vị liên quan đến giới tính, chủng tộc và các khía cạnh khác có trong dữ liệu huấn luyện.

Để giảm thiểu các rủi ro này, điều quan trọng là phải chọn lựa cẩn thận dữ liệu huấn luyện, xem xét việc sử dụng các mô hình chuyên dụng và tùy chỉnh các mô hình tổng quát. Ngoài ra, cần có sự kiểm tra của con người đối với đầu ra của AI và tránh sử dụng AI trong các quyết định quan trọng hoặc các vấn đề ảnh hưởng đến phúc lợi của con người. Cách tiếp cận này giúp giải quyết các rủi ro đạo đức và pháp lý do AI tạo sinh gây ra.

ChatGPT dường như rất chú ý đến khía cạnh này. Ví dụ, khi nhập các thuật ngữ có thể thiên vị, phân biệt hoặc bạo lực, nó sẽ không cung cấp phản hồi.

Theo kinh nghiệm của tôi, tôi đã thử tải lên một bức ảnh của Kinkaku-ji và yêu cầu tạo ra một hình ảnh cho thấy Kinkaku-ji bị Godzilla tấn công. Tuy nhiên, yêu cầu này đã bị từ chối vì được coi là biểu hiện bạo lực (mặc dù thực sự có thể là bạo lực), và đầu ra đã bị từ chối.

Triển vọng tương lai của AI tạo sinh: Tiềm năng và thách thức của sự phát triển công nghệ

Ảnh hưởng của AI tạo sinh đối với xã hội: giáo dục, giải trí và các lĩnh vực khác

AI tạo sinh đang tạo ra tác động đáng kể trong giáo dục, giải trí và các lĩnh vực khác.

Trong lĩnh vực giáo dục, AI tạo sinh được kỳ vọng sẽ nâng cao chất lượng giáo dục bằng cách cung cấp trải nghiệm học tập cá nhân hóa phù hợp với khả năng và sở thích của từng cá nhân, cũng như tự động tạo ra tài liệu giảng dạy.

Trong ngành công nghiệp giải trí, AI tạo sinh đã mở ra những hình thức biểu đạt nghệ thuật mới thông qua việc tạo video và âm nhạc theo thời gian thực.

Việc ứng dụng AI tạo sinh trong các lĩnh vực này mang lại những phương pháp mới khác biệt so với các phương pháp truyền thống, mở đường cho những đổi mới tiếp theo.

Sự tiến hóa nhanh chóng của công nghệ AI tạo sinh và những kỳ vọng trong tương lai

Công nghệ AI tạo sinh đang tiến hóa nhanh chóng và tiềm năng của nó là rất lớn.

Thực tế, kể từ khi ChatGPT ra mắt vào tháng 12 năm 2022 đến khi bài viết này được xuất bản vào tháng 12 năm 2023, các khả năng đã được hiện thực hóa và độ chính xác, cũng như sự đa dạng của nội dung được tạo ra đã thay đổi đáng kể.

Stable Diffusion, nổi tiếng về việc tạo hình ảnh, cũng đã chứng kiến sự cải thiện đáng kể về chất lượng hình ảnh được tạo ra trong năm qua.

Lĩnh vực này đang mở ra những khả năng mới không chỉ trong việc tạo nội dung mà còn trong phân tích dự đoán, phân tích dữ liệu và phát triển các ứng dụng tương tác.

Các tiến bộ trong xử lý ngôn ngữ tự nhiên và nhận diện hình ảnh, đặc biệt, đang mở rộng phạm vi ứng dụng của AI. Tuy nhiên, những tiến bộ này cũng mang lại những thách thức mới, như nhu cầu về dữ liệu chất lượng cao, các vấn đề đạo đức và yêu cầu về tài nguyên tính toán.

Lĩnh vực này dự kiến sẽ tiếp tục thu hút sự chú ý đáng kể và có tác động lớn đến kinh doanh và xã hội trong tương lai.

Introduction to Generative AI: A Simple Explanation of the World of Text and Image Generation

Greetings,

I am Kakeya, the representative of Scuti Jsc.

At Scuti, we specialize in offshore and lab-based development in Vietnam, leveraging the power of generative AI. Our services include not only development but also comprehensive generative AI consulting. We specialize in system development using generative AI with tools like Azure OpenAI Service and AWS Bedrock

Generative AI refers to artificial intelligence that can automatically create new content such as text, audio, and images.

Tools like ChatGPT, for instance, are widely used as free-to-access chatbots by many people. However, generative AI is not yet perfect and can sometimes produce inaccurate or inappropriate results.

Therefore, when using generative AI, it is important to select training data carefully, customize models, and have human oversight. We are in an era where humans need to work well with AI, keeping these points in mind.

Generative AI technology is evolving rapidly and is expected to continue providing many new opportunities in the future.

In this article, I would like to introduce the basics of generative AI and some use cases for readers who want to know what generative AI is all about.


Basics and Applications of Generative AI: The New Era of Text and Image Generation

Generative AI: An Innovative Content Creation Tool

Generative AI is rapidly gaining attention as a technology that enables new content creation. This technology can generate a variety of content, including audio, programs, images, text, and videos.

Services using generative AI, such as ChatGPT, have the ability to create interesting content like new art, music, and virtual worlds. These applications are not limited to entertainment but are also used for practical purposes, such as creating new product designs and optimizing business processes.

ChatGPT, in particular, is attracting attention for its ability to generate answers to questions, making it popular among many users. These tools can generate programs, university-level essays, poetry, and jokes, but they can also produce inaccurate or inappropriate results. Therefore, these models are heavily influenced by the quality of the data used for training.

Generative AI is part of a broader category of machine learning, which aims to mimic human intelligence by learning patterns from large amounts of data. While previously limited mainly to predictive models, the advent of generative AI has added the ability to create images or text descriptions on demand, rather than just recognizing and classifying photos.

The development of generative AI is primarily undertaken by major technology companies. These companies employ world-class computer scientists and engineers, with OpenAI, DeepMind, and Meta being representative examples. However, the use of generative AI is also expanding in the business world, enabling the instant generation of a wide range of written content that can be edited to fit specific purposes. This benefits many industries, including IT and software.

Finally, while the output of generative AI models can be very persuasive, it can sometimes contain incorrect information or biases. These risks can be mitigated by selecting initial data carefully, using specialized models, and customizing general models. Additionally, it is important to maintain human intervention for critical decisions and to address the ethical and legal risks of using generative AI models.

Use Cases of ChatGPT: New Possibilities in Text Generation

ChatGPT is bringing innovation to the field of text generation. This system has the ability to generate responses to a variety of questions.

Based on prompts provided by users, this service can generate diverse text content such as programs, university-level essays, poetry, and jokes.

In addition, leveraging its text generation capabilities, ChatGPT can be used to ask questions or request summaries of publicly available information. This significantly reduces the effort previously required to search for information using various keywords or to ask knowledgeable individuals. Now, you can get a quick overview just by asking ChatGPT.

ChatGPT is useful not only for personal use but also for business purposes. For example, it can be used for creating meeting minutes, drafting outlines for proposals, blog posts, system requirement definitions, brainstorming ideas, and many other applications.

By automating some of the tasks that were previously done manually with considerable accuracy, productivity can be greatly improved. Conversely, failing to effectively utilize ChatGPT in business can lead to significant productivity losses.

The Potential of Image-Generating AI: Applications in Business and Entertainment

Image-generating AI is attracting attention in both the business and entertainment sectors. This technology enables the automatic creation of various types of images by AI, including photo-realistic images, art-style images, and anime-style images.

Image-generating AI has made possible new visual expressions that were unthinkable with traditional methods. In business, it is used for prototyping product designs and generating marketing materials, while in the entertainment industry, it contributes to the creation of original visual effects for movies and games.

However, the quality and practicality of the generated images depend on the AI model and training data used, so attention must be paid to these aspects. This field is rapidly developing, and further possibilities are expected in the future.​​

Evolution of Learning and Model Development by AI

Learning and model development by AI have undergone significant evolution in recent years. Especially in the field of machine learning, models are learning patterns from vast datasets, enabling approaches that were previously impossible.

Machine learning, which was traditionally limited to predictive models, has expanded to include the generation of new images and text with the advent of generative AI. This has improved the accuracy of natural language processing and image recognition, making it possible to solve more complex tasks. However, these advancements require large datasets and advanced computational power, leading to a tendency for major technology companies to lead the way.​​

Practicality and Limitations of Generative AI: Impact on Business and Society

Practical Applications of Generative AI: Optimizing Business Processes

Generative AI plays a crucial role in optimizing business processes. By utilizing this technology, companies can significantly enhance productivity in areas such as product design, marketing strategies, and customer service.

In particular, the automatic generation of text and images by AI significantly reduces the time and cost of content creation, creating new business opportunities across various industries. However, there are limitations to the capabilities of generative AI, and attention must be paid to the accuracy, appropriateness, and ethical considerations of the generated content.

This means that businesses need to appropriately distinguish between tasks that should be done by humans and those that can be delegated to generative AI, leading to a need to review and optimize the business processes themselves based on this premise.

As the optimization of business processes with the assumption of delegating some tasks to generative AI progresses, the productivity of organizations is likely to increase significantly.

Inaccurate Results and Countermeasures: Challenges of Generative AI

Generative AI holds great potential, but it can also produce inaccurate results. While the text may appear very natural, it can sometimes provide answers that are factually incorrect. This issue arises largely due to the quality and biases of the data used to train the AI.

For instance, ChatGPT may fail to solve basic math problems (the author has experienced incorrect answers to simple addition problems and the inability to calculate the area of a triangle multiple times) or provide responses reflecting the biases present in online content related to gender or race.

To address these challenges, it is necessary to carefully select training data and customize the models from a technical standpoint. From the user’s perspective, it is important not to take AI outputs at face value and to have humans verify the final outputs. This approach helps enhance the accuracy and appropriateness of AI-generated content

Ethical Concerns and Risk Management: Precautions in the Use of Generative AI

Using generative AI involves important ethical concerns and risk management. AI models can potentially reflect biases related to gender, race, and other aspects present in the training data.

To mitigate these risks, it is crucial to carefully select training data, consider using specialized models, and customize general models. Additionally, human checks on AI outputs are necessary, and AI should be avoided in making critical decisions or matters affecting human welfare. This approach helps address the ethical and legal risks posed by generative AI.

ChatGPT appears to pay considerable attention to this aspect. For instance, when potentially biased, discriminatory, or violent terms are entered, it does not provide a response.

In my experience, I tried uploading a photo of Kinkaku-ji and requested an image generation showing Kinkaku-ji being attacked by Godzilla. However, this request was declined as it was interpreted as violent expression (which might actually be violent), and the output was refused

Future Prospects of Generative AI: Potential and Challenges of Technological Evolution

Impact of Generative AI on Society: Education, Entertainment, and Other Fields

​Generative AI is also having a significant impact on education, entertainment, and other fields.

In the field of education, it is expected to enhance the quality of education by providing personalized learning experiences tailored to individual abilities and interests, as well as by automatically generating teaching materials.

In the entertainment industry, it has made new forms of artistic expression possible through real-time video generation and music creation.

The application of generative AI in these fields offers new approaches different from traditional methods, paving the way for further innovation.​

Rapid Evolution of Generative AI Technology and Future Expectations

Generative AI technology is rapidly evolving, and its potential is immense.

In fact, since the launch of ChatGPT in December 2022 to the publication of this article in December 2023, the capabilities realized and the accuracy and variety of the generated content have significantly changed.

Stable Diffusion, known for image generation, has also seen a remarkable improvement in the quality of generated images over the past year.

This field is opening up new possibilities not only in content generation but also in predictive analysis, data analysis, and the development of interactive applications.

Advances in natural language processing and image recognition, in particular, are expanding the range of AI applications. However, these advancements also bring new challenges, such as the need for high-quality data, ethical issues, and the requirement for computational resources.

This field is expected to continue attracting significant attention and to have a substantial impact on business and society in the future.

Những điều cần biết trước khi triển khai hệ thống quản lý tài liệu

Xin chào!

Tôi là Kakeya, đại diện Công ty Cổ phần Scuti.

Scuti – chúng tôi là đơn vị chuyên phát triển phần mềm offshore và lab-based tại Việt Nam, tận dụng sức mạnh của trí tuệ nhân tạo ( Generative AI). Chúng tôi cung cấp các dịch vụ bao gồm phát triển và tư vấn toàn diện về AI tạo sinh. Gần đây, chúng tôi đã nhận được nhiều yêu cầu phát triển hệ thống tích hợp với AI tạo sinh, phản ánh nhu cầu ngày càng tăng về các giải pháp sáng tạo dựa trên AI.

Quản lý tài liệu là một công cụ thiết yếu hỗ trợ cả hiệu quả hoạt động và bảo vệ thông tin của công ty. Trong môi trường kinh doanh hiện nay, khi chuyển đổi số tiến triển, việc số hóa tài liệu đã trở thành xu thế tất yếu.

Quản lý tài liệu được thiết kế để tối ưu hóa việc tạo lập, lưu trữ, truy cập và quản lý tài liệu, giúp các công ty sử dụng thông tin một cách hiệu quả hơn. Đặc biệt, trong các ngành có yêu cầu pháp lý và tuân thủ quy định nghiêm ngặt, việc quản lý tài liệu phù hợp là cần thiết để nâng cao tính minh bạch trong hoạt động và cải thiện hiệu quả kiểm toán.

Bài viết này cung cấp giải thích chi tiết về mọi thứ từ các chức năng cơ bản của hệ thống quản lý tài liệu đến các tiêu chí lựa chọn, phương pháp sử dụng hiệu quả và các vấn đề cần xem xét trước khi triển khai.


Những thách thức chính khi triển khai hệ thống quản lý tài liệu

Về khả năng truy cập và hiệu quả tìm kiếm tài liệu

Một trong những thách thức phổ biến nhất khi triển khai hệ thống quản lý tài liệu là khả năng truy cập và hiệu quả tìm kiếm tài liệu. Khi các công ty tiến bộ trong việc số hóa, những vấn đề chính mà hệ thống phải đối mặt là thiếu khả năng truy cập nhanh chóng vào thông tin và khả năng tìm kiếm hiệu quả. Ví dụ, nếu hệ thống quản lý tài liệu không được thiết kế tốt, người dùng có thể mất nhiều thời gian để tìm các tài liệu cần thiết.

Để giải quyết vấn đề này, việc phân tích kỹ lưỡng các kịch bản sử dụng của người dùng ngay từ giai đoạn đầu của thiết kế hệ thống, hiểu được các tài liệu nào thường xuyên được truy cập và các từ khóa nào thường được sử dụng để tìm kiếm là rất quan trọng.

Dựa trên điều này, hệ thống quản lý tài liệu cần được xây dựng với metadata tài liệu được thiết lập phù hợp và thuật toán tìm kiếm nâng cao để giúp người dùng nhanh chóng tìm thấy thông tin họ cần.

Ngoài ra, việc chọn một hệ thống quản lý tài liệu tuân thủ Luật Lưu trữ Sổ sách Điện tử cũng là điều cần thiết để đáp ứng các yêu cầu pháp lý. Luật này quy định việc xử lý sổ sách và tài liệu được lưu trữ điện tử. Sử dụng một hệ thống phù hợp đảm bảo tính minh bạch trong kiểm toán và giảm thiểu rủi ro pháp lý.

Vấn đề về khả năng truy cập và hiệu quả tìm kiếm tài liệu gắn liền với thiết kế và chức năng của hệ thống quản lý tài liệu. Bằng cách tập trung vào những yếu tố này trong việc lựa chọn và thiết kế hệ thống, các công ty có thể đạt được hiệu quả hoạt động và quản lý thông tin an toàn.

Rủi ro an ninh và bảo mật dữ liệu

Khi triển khai hệ thống quản lý tài liệu, việc chú ý đầy đủ đến các rủi ro an ninh và thách thức bảo mật dữ liệu là rất quan trọng. Đặc biệt đối với các hệ thống xử lý thông tin mật của doanh nghiệp và dữ liệu khách hàng, những vấn đề này là không thể tránh khỏi.

Nếu hệ thống quản lý tài liệu không có đủ các tính năng an ninh, rủi ro rò rỉ dữ liệu sẽ tăng lên, có thể dẫn đến hậu quả làm tổn hại đến uy tín của công ty và các trách nhiệm pháp lý.

Để giải quyết những thách thức này, việc ưu tiên các tính năng an ninh trong quá trình lựa chọn hệ thống là cần thiết. Cụ thể, các chức năng như mã hóa dữ liệu, kiểm soát truy cập, và bảo trì nhật ký kiểm toán là cần thiết.

Mã hóa dữ liệu ngăn chặn thông tin bị đọc ngay cả khi có truy cập trái phép. Kiểm soát truy cập ngăn chặn người dùng không được phép truy cập vào thông tin quan trọng, và nhật ký kiểm toán ghi lại ai đã truy cập tài liệu nào và khi nào, giúp theo dõi bất kỳ hoạt động đáng ngờ nào.

Hơn nữa, hệ thống quản lý tài liệu phải tuân thủ Luật Lưu trữ Sổ sách Điện tử. Luật này yêu cầu quản lý tài liệu số hóa phải đáp ứng các tiêu chuẩn bảo vệ và kiểm toán nhất định. Bằng cách chọn một hệ thống phù hợp, các yêu cầu pháp lý này có thể được tuân thủ, giảm thiểu rủi ro pháp lý cho công ty.

Rủi ro an ninh và bảo vệ dữ liệu là một trong những yếu tố quan trọng nhất khi triển khai hệ thống quản lý tài liệu. Các công ty được yêu cầu chọn lựa các hệ thống có tính năng an ninh mạnh và thực hiện các biện pháp quản lý và bảo vệ thích hợp.

Thách thức về việc Tuân thủ và Kiểm toán

Việc triển khai hệ thống quản lý tài liệu đặt ra những thách thức phức tạp đặc biệt về tuân thủ quy định và sẵn sàng kiểm toán. Các công ty thường cần tuân thủ các quy định đặc thù của ngành và các yêu cầu pháp lý quốc tế, và để đáp ứng những yêu cầu này, quá trình quản lý tài liệu phải được thiết kế một cách phù hợp. Chẳng hạn, trong ngành tài chính và y tế, một số tài liệu nhất định phải được lưu giữ trong một khoảng thời gian theo quy định pháp luật và luôn sẵn sàng để kiểm toán bất cứ lúc nào.

Để đáp ứng đầy đủ các yêu cầu này, hệ thống quản lý tài liệu cần bao gồm các tính năng hỗ trợ tuân thủ quy định. Điều này bao gồm quản lý vòng đời tài liệu, quản lý chặt chẽ quyền truy cập và các tính năng chống sửa đổi. Ngoài ra, hệ thống phải cung cấp thông tin nhật ký chi tiết cho mục đích kiểm toán và có khả năng nhanh chóng truy xuất tài liệu khi cần.

Tuân thủ các quy định như Luật Lưu trữ Sổ sách Điện tử cũng là một chức năng quan trọng của hệ thống quản lý tài liệu. Luật này đặt ra các tiêu chuẩn cụ thể cho các công ty để đảm bảo rằng các tài liệu được lưu trữ dưới dạng số phải đáp ứng các yêu cầu pháp lý. Bằng cách chọn đúng hệ thống, những yêu cầu này có thể được tuân thủ một cách hiệu quả, giảm thiểu rủi ro khi kiểm toán.

Kết luận, các thách thức về tuân thủ và sẵn sàng kiểm toán có mối liên hệ sâu sắc với thiết kế và chức năng của hệ thống quản lý tài liệu. Các công ty cần chọn lựa các hệ thống quản lý tài liệu hoạt động đúng cách và liên tục cập nhật và giám sát những hệ thống này để đảm bảo chúng đáp ứng các yêu cầu pháp lý và sẵn sàng cho kiểm toán.

Các bước cụ thể để triển khai Hệ thống quản lý tài liệu

1. Phân tích nhu cầu và lựa chọn giải pháp

Phân tích chính xác nhu cầu

Việc xác định rõ ràng những loại tài liệu nào cần được quản lý và những quá trình kinh doanh nào sẽ được hưởng lợi nhiều nhất từ việc cải thiện hiệu quả là rất quan trọng. Việc thu thập phản hồi từ nhân viên và hiểu rõ những vấn đề họ đối mặt hàng ngày cũng rất quan trọng. Điều này cho phép định nghĩa cụ thể các tính năng hệ thống mong muốn.

Đánh giá các giải pháp quản lý tài liệu

Trong quá trình lựa chọn này, không chỉ tính năng mà còn cả chi phí, tính thân thiện với người dùng, cơ cấu hỗ trợ, và dễ dàng nâng cấp cũng cần được xem xét. Ví dụ, một hệ thống có khả năng tìm kiếm mạnh mẽ là mong muốn để nâng cao hiệu quả tìm kiếm tài liệu, và trong trường hợp tập trung vào bảo mật, một giải pháp được trang bị các tính năng bảo mật cao cấp nên được chọn.

Hơn nữa, việc chọn một hệ thống quản lý tài liệu tuân thủ Luật Lưu Trữ Sổ Sách Điện Tử là cực kỳ quan trọng từ góc độ tuân thủ quy định. Bằng cách triển khai một hệ thống phù hợp, việc tuân thủ các yêu cầu pháp lý được đảm bảo, bảo vệ công ty khỏi các vấn đề pháp lý có thể phát sinh trong tương lai.

Phân tích nhu cầu và lựa chọn giải pháp là những bước cơ bản và quan trọng trong quá trình triển khai hệ thống quản lý tài liệu. Bằng cách tiến hành phân tích nhu cầu chính xác ở giai đoạn này và lựa chọn hệ thống quản lý tài liệu tối ưu dựa trên các kết quả này, các công ty có thể thực hiện quản lý tài liệu một cách hiệu quả và hiệu quả.

2. Đánh giá hệ thống và thử nghiệm thí điểm

Đánh giá hệ thống và thử nghiệm thí điểm là những bước quan trọng trong quá trình triển khai hệ thống quản lý tài liệu. Quá trình này bao gồm việc xác minh liệu giải pháp đã chọn có đáp ứng được yêu cầu của môi trường làm việc thực tế hay không. Thử nghiệm thí điểm là cần thiết vì nó giúp xác định các vấn đề tiềm ẩn trước khi hệ thống được triển khai hoàn toàn và cung cấp cơ hội để giải quyết chúng.

Để bắt đầu thử nghiệm thí điểm, các phòng ban hoặc nhóm làm việc trong điều kiện gần giống với công việc thực tế được chọn. Mục tiêu là tích hợp hệ thống vào quy trình kinh doanh hàng ngày, đánh giá phản ứng của người dùng và hiệu suất của hệ thống. Việc tái hiện các kịch bản quản lý tài liệu thực tế, thử nghiệm các chức năng như tải lên tài liệu, tìm kiếm, truy cập và lưu trữ là rất quan trọng.

Trong quá trình đánh giá, mức độ dễ dàng sử dụng, hiệu suất và an ninh của hệ thống được đánh giá cao. Ví dụ, các yếu tố như khả năng người dùng có thể sử dụng trực quan, kết quả tìm kiếm có được nhanh chóng, và các giao thức bảo mật có phù hợp với chính sách của công ty hay không sẽ được xem xét. Phản hồi này rất hữu ích cho các điều chỉnh và cải tiến cuối cùng của hệ thống.

Ngoài ra, thử nghiệm thí điểm cũng xác minh mức độ hệ thống quản lý tài liệu đáp ứng các yêu cầu tuân thủ, như những yêu cầu do Luật Lưu Trữ Sổ sách Điện Tử đặt ra. Luật này đưa ra các quy định nghiêm ngặt về lưu trữ tài liệu số, và việc hệ thống hỗ trợ đầy đủ cho những này là rất quan trọng.

Đánh giá hệ thống và thử nghiệm thực địa là những bước thiết yếu để xác định liệu hệ thống quản lý tài liệu có thể thích ứng với các yêu cầu cụ thể của công ty hay không. Điều này đảm bảo rằng không có bất ngờ nào sau khi hệ thống được triển khai và duy trì hoạt động hiệu quả.

3. Triển khai hệ thống và độ tương thích người dùng

Việc triển khai và tương thích người dùng với hệ thống quản lý tài liệu là giai đoạn quan trọng cho sự thành công của dự án. Quá trình này bao gồm việc triển khai hệ thống trên toàn bộ tổ chức và hỗ trợ tất cả người dùng quen với hệ thống mới. Sự thành công của việc triển khai không chỉ dựa vào việc cài đặt kỹ thuật mà còn phụ thuộc đáng kể vào sự chấp nhận và thích nghi của người dùng.

Lập kế hoạch triển khai hệ thống

Việc phát triển một kế hoạch triển khai chi tiết và đảm bảo sự phối hợp giữa phòng IT và các đơn vị kinh doanh là rất quan trọng. Kế hoạch triển khai nên bao gồm cài đặt hệ thống, chuyển giao dữ liệu, và đào tạo nhân viên. Việc chuyển giao dữ liệu cần được thực hiện một cách cẩn thận để đảm bảo rằng các tài liệu hiện có được chuyển giao chính xác sang hệ thống mới mà không bị mất mát hoặc hư hại.

Xây dựng hệ thống hỗ trợ và đào tạo người dùng

Chương trình đào tạo hiệu quả là cần thiết để giúp nhân viên hiểu các chức năng và thao tác của hệ thống mới và sử dụng nó trong công việc hàng ngày. Đào tạo nên được cung cấp thông qua nhiều phương pháp như các buổi học thực hành, video hướng dẫn, tờ rơi FAQ, và hỗ trợ qua bàn giúp đỡ.

Thu thập phản hồi của người dùng thường xuyên

Việc xác định các điểm cần cải thiện trong hệ thống cũng rất quan trọng. Bằng cách nhanh chóng giải quyết các vấn đề có thể phát sinh trong giai đoạn đầu, sự hài lòng của người dùng có thể được duy trì, và việc chấp nhận hệ thống có thể được thúc đẩy.

Ngoài ra, vì hệ thống quản lý tài liệu phải tuân thủ Luật Lưu trữ Sổ sách Điện tử, việc tuân thủ này cũng phải được xác minh trong suốt quá trình. Điều này đảm bảo rằng các yêu cầu pháp lý được đáp ứng trong khi công ty thiết lập một môi trường quản lý tài liệu an toàn và hiệu quả.

Triển khai hệ thống và thích nghi của người dùng là quan trọng ngang bằng với việc thực hiện kỹ thuật và cần được điều chỉnh cho phù hợp với văn hóa và hoạt động của tổ chức. Bằng cách thực hiện cẩn thận giai đoạn này, hệ thống quản lý tài liệu có thể thể hiện giá trị thực sự của mình, cải thiện đáng kể hiệu quả hoạt động và bảo vệ thông tin của công ty.

Trong giai đoạn triển khai này, việc chuyển đổi tài liệu giấy thành dữ liệu điện tử trở nên cần thiết. Công việc này đòi hỏi sự lao động thủ công, và các trường hợp quá trình này bị đình trệ thường được quan sát thấy.

Dịch vụ OCR truyền thống yêu cầu tài liệu phải theo một định dạng chuẩn và biết được nội dung được đặt ở đâu để độ chính xác khi đọc được hiệu quả, điều này có thể làm giảm hiệu quả của quá trình số hóa.

Công ty chúng tôi cung cấp “Dịch vụ AI Đọc Tài liệu” là một giải pháp để số hóa tài liệu viết tay dưới nhiều định dạng khác nhau. Sử dụng giải pháp này có thể giảm đáng kể công sức cần thiết để số hóa tài liệu.

Vận hành và cải tiến Hệ thống quản lý tài liệu

Tiếp nhận phản hồi và xác định các điểm cần cải tiến

Việc tiếp nhận phản hồi và xác định các điểm cần cải tiến là rất quan trọng trong quá trình vận hành và cải tiến hệ thống quản lý tài liệu. Cải tiến liên tục sau khi triển khai là cần thiết và giúp cải thiện hiệu quả, tính dễ sử dụng và an ninh của hệ thống.

Đầu tiên, việc thiết lập một hệ thống để chủ động thu thập phản hồi từ người dùng sau khi bắt đầu vận hành là rất quan trọng. Phản hồi có thể được thu thập thông qua nhiều phương thức như email, mẫu đặc biệt, cuộc họp định kỳ và khảo sát. Phản hồi này bao gồm các ý kiến quý báu dựa trên trải nghiệm thực tế của người dùng, như tính dễ sử dụng, báo cáo lỗi và yêu cầu cải tiến chức năng.

Bước tiếp theo là phân tích phản hồi đã thu thập để xác định các điểm cần cải tiến. Trong phân tích này, việc ưu tiên dựa trên tần suất của các vấn đề, tác động của chúng và tính khẩn cấp của các giải pháp là quan trọng. Ví dụ, nếu một vấn đề được nhiều người dùng báo cáo thường xuyên, nó nên được xử lý như một vấn đề ưu tiên cao.

Khi thực hiện cải tiến, việc phối hợp giữa phòng IT và các bộ phận kinh doanh để điều chỉnh các quy trình kinh doanh cùng với các giải pháp kỹ thuật là cần thiết. Để xác nhận hiệu quả của các cải tiến, việc theo dõi liên tục sau khi thực hiện là cần thiết và có thể cần thêm điều chỉnh theo yêu cầu.

Cũng nên luôn xem xét cải tiến về mặt an ninh của hệ thống. Dựa trên các báo cáo về sự cố an ninh và phát hiện lỗ hổng, các biện pháp phòng thủ nên được tăng cường để giảm thiểu rủi ro.

Kết luận, việc tiếp nhận phản hồi và xác định các điểm cần cải tiến là chìa khóa để vận hành thành công hệ thống quản lý tài liệu. Bằng cách phản ánh trực tiếp ý kiến từ người dùng, hệ thống trở nên hiệu quả và an toàn hơn, góp phần cải thiện năng suất tổng thể của tổ chức.

Cập nhật công nghệ và đào tạo liên tục

Việc cập nhật công nghệ và đào tạo liên tục là những yếu tố cần thiết trong hoạt động và cải tiến hệ thống quản lý tài liệu. Khi công nghệ phát triển, việc giữ cho các chức năng của hệ thống được cập nhật mới nhất trực tiếp ảnh hưởng đến sự an toàn và hiệu quả của hệ thống.

Đầu tiên, các cập nhật công nghệ bao gồm việc áp dụng các bản vá bảo mật cho hệ thống, thêm các tính năng mới và cải tiến các chức năng hiện có. Những cập nhật này đặc biệt quan trọng để bảo vệ chống lại các mối đe dọa an ninh mạng. Ví dụ, việc liên tục triển khai các công nghệ bảo mật mới nhất là cần thiết để ngăn chặn truy cập trái phép và rò rỉ dữ liệu.

Tiếp theo là việc thực hiện các chương trình đào tạo. Đào tạo là cần thiết mỗi khi có cập nhật kỹ thuật, đảm bảo rằng người dùng hiểu các tính năng mới và các phương pháp vận hành được cải tiến để sử dụng chúng một cách hiệu quả. Đào tạo nên được cung cấp qua nhiều hình thức như hội thảo trực tuyến, hội thảo tập trung, và video hướng dẫn, giúp người dùng thành thạo hoàn toàn các chức năng của hệ thống và tối ưu hóa quy trình làm việc của họ.

Đào tạo định kỳ cũng đóng vai trò hỗ trợ người dùng tiếp tục thích nghi với những thay đổi công nghệ. Bằng cách tìm hiểu về các phương pháp tốt nhất mới trong quản lý tài liệu và xu hướng trong ngành, nhân viên có thể duy trì và nâng cao kỹ năng của mình.

Kết luận, việc cập nhật kỹ thuật và đào tạo liên tục là rất quan trọng để đảm bảo hiệu quả lâu dài của hệ thống quản lý tài liệu và nâng cao năng lực của người dùng. Điều này đảm bảo rằng hệ thống luôn được cập nhật mới nhất và cải thiện hiệu quả và an toàn trong quản lý tài liệu trên toàn tổ chức.

Tự động hóa và tăng hiệu quả quy trình

Một khía cạnh quan trọng trong vận hành và cải tiến hệ thống quản lý tài liệu là tự động hóa và tăng hiệu quả các quy trình. Nếu hệ thống được thiết kế tốt, việc tự động hóa các nhiệm vụ quản lý tài liệu hàng ngày có thể tiết kiệm thời gian và tăng cường hiệu quả.

Bước đầu tiên trong tự động hóa là chuẩn hóa các công việc lặp đi lặp lại như tạo tài liệu, phân loại, lưu trữ và tìm kiếm. Chẳng hạn, sử dụng các mẫu tài liệu có thể duy trì sự nhất quán và chính xác đồng thời giảm thời gian cần thiết cho việc tạo mới. Ngoài ra, hệ thống nên được thiết lập để các tài liệu được tự động phân loại và gắn thẻ một cách phù hợp, làm cho chúng dễ dàng tìm kiếm và truy cập.

Tiếp theo là tự động hóa quy trình làm việc. Tự động hóa các quy trình liên quan đến lưu thông tài liệu, như quy trình phê duyệt và chu kỳ xem xét, có thể làm cho tiến trình công việc trở nên trơn tru và giảm thiểu đáng kể thời gian mất mát. Điều này đòi hỏi các tính năng cho phép hệ thống tự động thông báo cho các bên liên quan ở mỗi bước, đảm bảo rằng các hành động cần thiết được thực hiện kịp thời.

Một cách khác để tăng hiệu quả là thông qua tự động hóa việc tạo báo cáo và phân tích dữ liệu. Sử dụng dữ liệu do hệ thống quản lý tài liệu tạo ra để phân tích các mẫu hành vi của người dùng và cách sử dụng tài liệu có thể tiết lộ thêm các lĩnh vực cần cải thiện. Báo cáo tự động trở thành công cụ quan trọng cho quản trị viên để theo dõi việc sử dụng hệ thống theo thời gian thực và phản ứng nhanh chóng khi cần.

Tự động hóa và tăng hiệu quả quy trình là cần thiết để tối đa hóa việc sử dụng hệ thống quản lý tài liệu. Điều này giúp giải phóng nhân viên khỏi các nhiệm vụ hành chính cồng kềnh, cho phép họ tập trung vào công việc sáng tạo và có giá trị hơn.

What You Should Know Before Implementing a Document Management System

Greetings,

I am Kakeya, the representative of Scuti Jsc.

At Scuti, we specialize in offshore and lab-based development in Vietnam, leveraging the power of generative AI. Our services include not only development but also comprehensive generative AI consulting. Recently, we have been privileged to receive numerous requests for system development integrated with generative AI, reflecting the growing demand for innovative AI-driven solutions

Document management is an essential tool that supports both the efficiency of business operations and the protection of information. In today’s business environment, as digital transformation progresses, the digitalization of documents has become an inevitable trend.

Document management is designed to streamline the creation, storage, access, and management of documents, enabling companies to utilize information more effectively. Especially in industries with strict legal requirements and regulatory compliance, proper document management is crucial for enhancing operational transparency and improving audit efficiency.

This article provides a detailed explanation of everything from the basic functions of document management systems to selection criteria, effective usage methods, and issues to consider before implementation.


Key Challenges When Implementing a Document Management System

Issues with Document Accessibility and Search Efficiency

One of the most common challenges when implementing a document management system is the accessibility and search efficiency of documents. As companies advance in digitization, the main issues the system faces including the lack of rapid access to information and efficient search capabilities. For example, if a document management system is not well designed, users may spend a lot of time finding the necessary documents.

To solve this problem, it is crucial, in the initial stages of system design, to thoroughly analyze user scenarios, understand which documents are accessed frequently, and identify which keywords are commonly used for searches.

Based on this, the document management system must be built with appropriately set document metadata and advanced search algorithms to help users quickly find the information they need.

Additionally, choosing a document management system that complies with the Electronic Bookkeeping Law is essential for meeting legal requirements. This law regulates the handling of electronically stored ledgers and documents. Using an appropriate system ensures transparency during audits and reduces legal risks.

The issue of document accessibility and search efficiency is closely related to the design and functionality of the document management system. By focusing on these elements in the selection and design of the system, companies can achieve operational efficiency and secure information management.

Security Risks and Data Protection

When implementing a document management system, it is crucial to pay sufficient attention to security risks and data protection challenges. Especially for systems that handle sensitive corporate information and customer data, these issues are unavoidable.

If a document management system lacks adequate security features, the risk of data breaches increases, potentially leading to damage to the company’s reputation and legal liabilities.

To address these challenges, prioritizing security features during system selection is essential. Specifically, functions such as data encryption, access control, and maintaining audit logs are necessary.

Data encryption prevents information from being read even in the event of unauthorized access. Access control stops unauthorized users from accessing important information, and audit logs record who accessed which documents and when, helping to track any suspicious activities.

Moreover, the document management system must comply with the Electronic Bookkeeping Law. This law requires that the management of digitized documents meets certain protection and audit standards. By selecting an appropriate system, these legal requirements can be adhered to, reducing the company’s legal risks.

Security risks and data protection are among the most critical considerations when implementing a document management system. Companies are required to choose systems with robust security features and take appropriate management and protection measures.

Compliance and Audit Challenges

Implementing a document management system presents particularly complex challenges regarding regulatory compliance and audit readiness. Companies often need to adhere to industry-specific regulations and international legal requirements, and to meet these requirements, the document management process must be appropriately designed. For example, in the financial and healthcare industries, certain documents must be retained for a statutory period and be readily available for audits at any time.

To adequately meet these requirements, document management systems need to incorporate features for regulatory compliance. These include document lifecycle management, strict control of access permissions, and tamper-proof features. Additionally, the system must provide detailed log information for auditing purposes and be able to quickly retrieve documents as needed.

Complying with regulations like the Electronic Bookkeeping Law is also a critical function of document management systems. This law imposes specific standards on companies to ensure that documents stored digitally meet legal requirements. By adopting the right system, these requirements can be efficiently met, minimizing audit risks.

In conclusion, the challenges of compliance and audit readiness are deeply connected to the design and functionality of document management systems. Companies must select properly functioning document management systems and continuously update and monitor these systems to ensure they meet legal requirements and are prepared for audits.

Specific Steps for Implementing a Document Management System

1. Needs Analysis and Solution Selection

Accurately Analyze Needs

It’s crucial to clearly identify which documents need to be managed and which business processes would benefit most from efficiency improvements. Collecting feedback from employees and understanding the issues they face daily is also important. This allows for the specific definition of the desired system features.

Evaluate Document Management Options

In this selection process, not only functionality but also cost, user-friendliness, support structure, and upgrade simplicity must be considered. For example, a system with powerful search capabilities is desirable to enhance document search efficiency, and for heightened security focus, a solution equipped with advanced security features should be chosen.

Moreover, selecting a document management system that complies with the Electronic Bookkeeping Law is extremely important from a regulatory compliance perspective. By implementing an appropriate system, compliance with legal requirements is ensured, protecting the company from potential legal issues in the future.

Needs analysis and solution selection are fundamental and critical steps in the document management system implementation process. By conducting accurate needs analysis at this stage and selecting the optimal document management system based on these results, companies can achieve efficient and effective document management.

2. System Evaluation and Pilot Testing

System evaluation and pilot testing are crucial steps in the implementation of a document management system. This process involves verifying whether the selected solution meets the requirements of the actual work environment. Pilot testing is essential as it identifies potential problems before the system is fully implemented and provides an opportunity to resolve them.

To start the pilot testing, departments or teams that operate under conditions similar to actual work are selected. The aim here is to integrate the system into daily business processes, assessing user reactions and system performance. It is vital to replicate real document management scenarios, testing functions such as document uploading, searching, accessing, and storage.

During the evaluation, the system’s usability, performance, and security are emphasized. For instance, factors such as whether users can operate it intuitively, how quickly search results are retrieved, and whether the security protocols align with the company’s policies are evaluated. This feedback is very useful for the final adjustments and improvements of the system.

Additionally, pilot testing verifies how well the document management system meets compliance requirements, such as those set by the Electronic Bookkeeping Law. This law imposes strict regulations on the storage of digital documents, and it is crucial that the system adequately supports these.

System evaluation and pilot testing are essential steps to determine if the document management system can adapt to the specific demands of the company. This ensures that there are no surprises after the system is implemented and that efficient operation is maintained.

3. System Implementation and User Adoption

Implementing and adapting users to a document management system is a crucial phase for the success of the project. This process involves deploying the system across the entire organization and supporting all users to become accustomed to the new system. The success of the implementation relies not only on technical installation but also significantly on user acceptance and adaptation.

Planning the System Implementation

It is important to develop a detailed implementation plan and ensure coordination between the IT department and business units. The implementation plan should include system settings, data migration, and employee training. Data migration needs to be handled carefully to ensure that existing documents are accurately transferred to the new system without any loss or damage.

Building User Training and Support Structures

An effective training program is essential to help employees understand the functions and operations of the new system and to utilize it in their daily work. Training should be provided through various methods, such as hands-on sessions, video tutorials, FAQ sheets, and help desk support.

Regular Collection of User Feedback

Identifying areas for improvement in the system is also important. By responding quickly to issues that may arise in the initial stages, user satisfaction can be maintained, and the acceptance of the system can be promoted.

Additionally, since the document management system must comply with the Electronic Bookkeeping Law, this compliance must also be verified throughout the process. This ensures that the legal requirements are met while the company establishes a safe and efficient document management environment.

System implementation and user adaptation are as important as the technical execution and should be adapted to fit the organization’s culture and operations. By carefully executing this stage, the document management system can demonstrate its true value, significantly improving the company’s operational efficiency and information protection. 

During this phase of system implementation, the task of digitizing paper documents becomes necessary. This task requires manual labor, and cases where this process stalls are often observed.

Traditional OCR services require documents to be in a standard format and known content placement for effective readability, which can decrease the efficiency of the digitization process.

Our company offers an “AI Document Reading Service” that provides a solution for digitizing handwritten documents in non-standard formats. Utilizing this solution can significantly reduce the labor involved in document digitization.

Operation and Improvement of the Document Management System

Incorporating Feedback and Identifying Improvement Areas

Incorporating feedback and identifying areas for improvement are extremely important in the operation and enhancement of a document management system. Continuous improvement post-implementation is essential and leads to enhancements in the system’s efficiency, usability, and security.

First, it is crucial to establish a system for actively collecting feedback from users after the operation begins. Feedback can be gathered through various methods such as emails, dedicated forms, regular meetings, and surveys. This feedback includes valuable insights based on actual user experiences, such as ease of use, bug reports, and requests for functional improvements.

The next step involves analyzing the collected feedback to identify areas for improvement. In this analysis, it’s important to prioritize based on the frequency of the issues, their impact, and the urgency of solutions. For example, if a problem is frequently reported by many users, it should be treated as a high-priority issue.

When implementing improvements, it is essential for the IT and business departments to collaborate, adjusting business processes along with technical solutions. To verify the effectiveness of the improvements, continuous monitoring after implementation is necessary, and further adjustments may be needed as required.

Improvements in system security should always be considered. Based on reports of security incidents and the discovery of vulnerabilities, defensive measures should be strengthened to minimize risks.

In conclusion, incorporating feedback and identifying areas for improvement are key to the successful operation of a document management system. By reflecting direct opinions from users, the system becomes more efficient and secure, contributing to overall organizational productivity improvement.

Continuous Technical Updates and Training

Continuous technical updates and training are essential elements in the operation and improvement of a document management system. As technology evolves, keeping the system’s functions up-to-date directly impacts the security and efficiency of the system.

Firstly, technical updates include applying security patches to the system, adding new features, and improving existing functionalities. These updates are particularly important for protecting against cybersecurity threats. For example, it is necessary to continually implement the latest security technologies to prevent unauthorized access and data breaches.

Next is the implementation of training programs. Training is essential whenever technical updates are made, ensuring users understand new features and improved methods of operation to effectively utilize them. Training should be provided in various formats, such as online seminars, workshops, and tutorial videos, enabling users to fully master all the functions of the system and optimize their workflow.

Regular training also serves as support for users to continue adapting to technological changes. By learning about new best practices in document management and industry trends, employees can maintain and enhance their skills.

In conclusion, continuous technical updates and training are crucial to ensure the sustained effectiveness of the document management system and to enhance user capabilities. This ensures that the system remains up-to-date, and improves the overall efficiency and security of document management across the organization.

Streamlining and Automating Processes

An important aspect of the operation and improvement of a document management system is the automation and efficiency of processes. If the system is well-designed, automating routine document management tasks can save time and enhance efficiency.

The first step in automation is to standardize repetitive tasks such as document creation, categorization, storage, and search. For example, using document templates can maintain consistency and accuracy while reducing the time needed for creation. Additionally, the system should be set up so that documents are automatically categorized and tagged appropriately, making them easy to search and access.

Next is the automation of workflows. Automating processes related to the circulation of documents, such as approval processes and review cycles, can smooth the progress of work and significantly reduce time loss. This requires features that allow the system to automatically notify stakeholders at each step, ensuring that necessary actions are taken in a timely manner.

Another way to enhance efficiency is through the automation of report generation and data analysis. Utilizing data generated by the document management system to analyze user behavior patterns and document usage can reveal further areas for improvement. Automated reports become a crucial tool for administrators to monitor system usage in real-time and respond quickly as needed.

Process automation and efficiency are essential for maximizing the use of a document management system. This frees employees from cumbersome administrative tasks, allowing them to focus on more creative and valuable work.

Rủi ro an ninh của AI tạo sinh và các biện pháp cụ thể mà các công ty cần biết

Xin chào!

Tôi là Kakeya, đại diện Công ty Cổ phần Scuti.

Scuti – chúng tôi là đơn vị chuyên phát triển phần mềm offshore và lab-based tại Việt Nam, tận dụng sức mạnh của trí tuệ nhân tạo ( Generative AI). Chúng tôi cung cấp các dịch vụ bao gồm phát triển và tư vấn toàn diện về AI tạo sinh. Gần đây, chúng tôi đã nhận được nhiều yêu cầu phát triển hệ thống tích hợp với AI tạo sinh, phản ánh nhu cầu ngày càng tăng về các giải pháp sáng tạo dựa trên AI

Công ty của bạn nhìn nhận thế nào về rủi ro an ninh liên quan đến AI tạo sinh? 

Với sự phát triển của AI tạo sinh, nhiều công ty đang tìm thấy cơ hội kinh doanh mới. Tuy nhiên, công nghệ đổi mới này cũng chứa đựng tiềm năng về rủi ro và vấn đề an ninh. Bài viết này tập trung vào rủi ro an ninh của AI tạo sinh và các biện pháp phòng ngừa mà các công ty có thể áp dụng. Bằng cách tham khảo các trường hợp thực tế, bài viết khám phá các rủi ro và vấn đề mà các công ty phải đối mặt và cung cấp các hướng dẫn và biện pháp hiệu quả. Bài viết này sẽ giải thích chi tiết về rủi ro an ninh của AI tạo sinh và các biện pháp phòng ngừa.


Tầm quan trọng của an ninh trong AI tạo sinh

Rủi ro an ninh mà các công ty phải đối mặt

Khi việc sử dụng AI tạo sinh tiến triển, việc quản lý rủi ro an ninh một cách thích hợp là rất quan trọng đối với các công ty. Lý do là bởi vì, mặc dù AI tạo sinh có thể góp phần vào việc tự động hóa quy trình kinh doanh và tạo ra các dịch vụ mới, nó cũng tiềm ẩn khả năng gây ra các vấn đề an ninh như rò rỉ dữ liệu và truy cập trái phép. Chẳng hạn, việc tự động tạo nội dung bằng AI tạo sinh có nguy cơ bị các bên xấu lợi dụng để lan truyền thông tin giả mạo hoặc thực hiện các cuộc tấn công lừa đảo. Hơn nữa, nếu dữ liệu mà AI tạo sinh xử lý có tính bảo mật cao, bất kỳ sự rò rỉ nào của dữ liệu này có thể gây ra thiệt hại lớn cho công ty. Để giảm thiểu những rủi ro này, việc các công ty phát triển hướng dẫn an ninh cho AI tạo sinh, tăng cường giáo dục cho nhân viên và tiến hành kiểm toán định kỳ hệ thống là hiệu quả. Kết luận, việc hiểu biết những rủi ro an ninh này và áp dụng các biện pháp thích hợp là cần thiết cho việc sử dụng AI tạo sinh một cách an toàn.

Học hỏi Thách thức An ninh từ các ví dụ

Để hiểu sâu hơn về các rủi ro an ninh liên quan đến AI tạo sinh, việc học hỏi từ các trường hợp thực tế là cực kỳ hiệu quả. Sau đây là một số sự cố điển hình đã xảy ra trong lịch sử:

Người dùng doanh nghiệp nhập mã nguồn vào ChatGPT

Theo báo cáo của Netskope Threat Labs, trong số 10.000 người dùng doanh nghiệp, có 22 người đăng mã nguồn hàng tháng, dẫn đến trung bình 158 sự cố. Điều này vượt qua số lượng được đăng ký (trung bình 18 sự cố), sở hữu trí tuệ (trung bình 4 sự cố) và mật khẩu và khóa (trung bình 4 sự cố), khiến mã nguồn trở thành thông tin nhạy cảm bị rò rỉ thường xuyên nhất.

Nhân viên Samsung nhập mã nguồn bảo mật vào ChatGPT

Nhân viên Samsung đã nhập mã nguồn bảo mật vào ChatGPT, dẫn đến vi phạm chính sách quản lý thông tin bảo mật của công ty và gây ra rò rỉ thông tin.

Samsung cấm sử dụng ứng dụng AI tạo sinh sau sự cố rò rỉ dữ liệu

Sau một sự cố mà một số nhân viên vô tình rò rỉ dữ liệu bảo mật qua ChatGPT, Samsung đã cấm nhân viên sử dụng các ứng dụng AI tạo sinh từ tháng 5 năm 2023 và quyết định phát triển các ứng dụng AI của riêng mình.

Rò rỉ dữ liệu do lỗi của ChatGPT

Vào cuối tháng 3 năm 2023, OpenAI đã công bố một sự cố rò rỉ dữ liệu do lỗi trong thư viện mã nguồn mở, buộc ứng dụng AI tạo sinh phải tạm thời ngừng hoạt động. Sự cố này làm rò rỉ thông tin liên quan đến thanh toán của một số khách hàng và cho phép xem tiêu đề lịch sử chat của một số người dùng hoạt động.

Nhóm AI của Microsoft vô tình công khai 38TB dữ liệu

Nhóm nghiên cứu AI của Microsoft đã vô tình công khai 38TB dữ liệu đào tạo riêng tư, trong đó bao gồm các thông tin rất nhạy cảm.

Rủi ro từ việc làm nhiễu dữ liệu và thao túng trong các mô hình AI tạo sinh, đặc biệt là ChatGPT

Các mô hình AI tạo sinh, đặc biệt là ChatGPT, đối mặt với nguy cơ bị làm nhiễu dữ liệu, dẫn đến việc tạo ra các kết quả sai lệch. Điều này có thể gây ra việc lan truyền thông tin sai lệch, ảnh hưởng đến các quyết định kinh doanh.

Các biện pháp An ninh khi sử dụng AI tạo sinh

Quản lý rủi ro thực tế và ứng phó

Các biện pháp bảo mật khi sử dụng AI tạo sinh yêu cầu quản lý rủi ro thực tế và ứng phó kịp thời. Điều này xuất phát từ nhu cầu khai thác công nghệ AI tạo sinh một cách an toàn, bằng cách xác định trước các rủi ro tiềm ẩn và áp dụng các biện pháp thích hợp. Chẳng hạn, để ngăn chặn việc lạm dụng nội dung do AI tạo ra, có thể đề xuất triển khai các công nghệ đánh dấu kỹ thuật số và theo dõi nội dung. Hơn nữa, để đối phó với rủi ro truy cập trái phép và rò rỉ dữ liệu, việc sử dụng các hệ thống xác thực mạnh mẽ và công nghệ mã hóa là hiệu quả. Bên cạnh đó, các công ty cần tiến hành đào tạo bảo mật thường xuyên để nâng cao nhận thức về bảo mật cho nhân viên.

Một ví dụ cụ thể, là đã có trường hợp các công ty cung cấp dịch vụ sử dụng AI kết hợp các biện pháp này để bảo vệ dữ liệu khách hàng và duy trì an ninh hệ thống.

Như vậy, các công ty sử dụng AI tạo sinh có thể tối đa hóa tiềm năng của công nghệ trong khi giảm thiểu rủi ro bằng cách tham gia thực tế vào quản lý rủi ro và các biện pháp bảo mật.

Các bước cụ thể để phòng ngừa sự cố

Khi sử dụng AI tạo sinh, điều quan trọng là tuân thủ các bước cụ thể để phòng ngừa sự cố.

Đầu tiên, tiến hành đánh giá rủi ro bảo mật cho tất cả các dự án AI là điều cơ bản. Việc này cho phép xác định các rủi ro cụ thể của từng dự án và lập kế hoạch các biện pháp đối phó. Tiếp theo, triển khai kiểm soát truy cập nghiêm ngặt và mã hóa dữ liệu để bảo vệ dữ liệu và giảm nguy cơ rò rỉ thông tin bảo mật.

Ngoài ra, cần xem xét bảo mật từ giai đoạn thiết kế hệ thống AI và nâng cao khả năng chống lại các đầu vào và hoạt động trái phép. Hơn nữa, tiến hành giáo dục và đào tạo bảo mật thường xuyên cho nhân viên để nâng cao nhận thức về bảo mật là điều cần thiết.

Một ví dụ thực tế là đã có những trường hợp các công ty cung cấp dịch vụ khách hàng sử dụng AI tạo sinh đã áp dụng các bước này để phòng ngừa sự cố một cách chủ động.

Như vậy, để phòng ngừa sự cố, điều cần thiết là tuân thủ các bước cụ thể từ đánh giá rủi ro đến triển khai và giáo dục nhân viên nhằm đảm bảo việc sử dụng AI tạo sinh một cách an toàn.

Xây dựng hướng dẫn bảo mật hiệu quả

Xây dựng các hướng dẫn bảo mật hiệu quả là một bước quan trọng đối với các công ty sử dụng AI tạo sinh. Về cơ bản, các hướng dẫn này cung cấp một nền tảng cho các công ty quản lý rủi ro bảo mật và đảm bảo việc sử dụng công nghệ AI một cách an toàn. Lý do là vì các hướng dẫn bảo mật đặt ra các tiêu chuẩn và quy trình rõ ràng, giúp các công ty phản ứng hiệu quả với các thách thức bảo mật như bảo vệ dữ liệu, quản lý truy cập và các lỗ hổng hệ thống.

Ví dụ, các hướng dẫn có thể bao gồm các quy tắc xử lý dữ liệu sử dụng trong việc đào tạo mô hình AI, các biện pháp ngăn chặn truy cập trái phép vào hệ thống AI, và quy trình ứng phó sự cố. Ngoài ra, trong việc xây dựng các hướng dẫn này, cần xem xét các tiêu chuẩn ngành và yêu cầu quy định để đảm bảo sự phù hợp với chính sách bảo mật toàn công ty. Trong thực tế, nhiều công ty đã phát triển các hướng dẫn bảo mật và quản lý hiệu quả các rủi ro liên quan đến AI tạo sinh.

Tóm lại, việc xây dựng các hướng dẫn bảo mật hiệu quả là không thể thiếu để giảm thiểu các rủi ro liên quan đến việc sử dụng AI tạo sinh và bảo vệ giá trị của công ty.

Tại Nhật Bản, có các hướng dẫn công khai như hướng dẫn Sử dụng AI Tạo sinh do Hiệp hội Học sâu Nhật Bản và Hướng dẫn sử dụng AI Tạo văn bản do Chính phủ Tokyo ban hành. Tham khảo những tài liệu này, các công ty hoặc tổ chức có thể tạo ra các hướng dẫn phù hợp với nhu cầu cụ thể của mình.

Security Risks of Generative AI and Specific Measures Companies Should Know

Greetings,

I am Kakeya, the representative of Scuti Jsc.

At Scuti, we specialize in offshore and lab-based development in Vietnam, leveraging the power of generative AI. Our services include not only development but also comprehensive generative AI consulting. Recently, we have been privileged to receive numerous requests for system development integrated with generative AI, reflecting the growing demand for innovative AI-driven solutions

How does your company perceive the security risks associated with generative AI? 

With the rise of generative AI, many companies are discovering new business opportunities. However, this innovative technology also harbors the potential for security risks and problems. This article focuses on the security risks of generative AI and the countermeasures companies can take. By referring to actual cases, it explores the risks and issues faced by companies and provides effective guidelines and measures. This article will provide a detailed explanation of the security risks of generative AI and the measures against them.


The Importance of Security in Generative AI

Security Risks Faced by Companies

As the use of generative AI progresses within companies, it is imperative for them to properly manage the associated security risks. This is because, while generative AI contributes to the automation of business processes and the creation of new services, it also has the potential to cause security issues such as data leaks and unauthorized access.

For example, the automatic generation of content using generative AI carries the risk of being exploited by malicious third parties to spread misinformation or conduct phishing attacks. Additionally, if the data handled by generative AI is highly confidential, any leakage of this data could result in significant damage to the company.

To mitigate these risks, companies should establish security guidelines for the use of generative AI, enhance employee training, and conduct regular system audits. In conclusion, understanding these security risks and implementing appropriate measures is essential for the safe utilization of generative AI.

For those who want to learn more about generative AI, please refer to our other article, “Introduction to Generative AI: A Clear Explanation of Text and Image Generation“.

Learning Security Challenges from Case Studies

Understanding the security risks associated with generative AI can be significantly enhanced by studying actual cases. Below are several reported incidents.

Corporate Users Entering Source Code into ChatGPT

According to Netskope Threat Labs, out of 10,000 corporate users, 22 individuals per month are posting source code, resulting in an average of 158 incidents. This surpasses the posting of regulated data (average 18 incidents), intellectual property (average 4 incidents), and passwords and keys (average 4 incidents), making source code the most frequently leaked sensitive information.
Reference URL: Infosecurity Magazine

Samsung Employees Entering Confidential Source Code into ChatGPT

Samsung employees input confidential source code into ChatGPT, leading to a violation of the company’s confidential information management policy and resulting in information leakage.
Reference URL: Springer Link

Samsung Bans Use of Generative AI Apps after Data Leak

After an incident where some employees accidentally leaked confidential data via ChatGPT, Samsung banned the use of generative AI applications by employees from May 2023 and decided to develop its own AI applications.
Reference URL: Infosecurity Magazine

Data Leak Due to ChatGPT Bug

At the end of March 2023, OpenAI disclosed a data leak caused by a bug in an open-source library, necessitating the temporary offline status of its generative AI application. This data leak exposed payment-related information of some customers and allowed viewing of chat history titles for some active users.
Reference URL: Infosecurity Magazine

Microsoft AI Team Accidentally Publishes 38TB of Data

Microsoft’s AI research team mistakenly published 38TB of private training data, which included highly sensitive information.
Reference URL: Springer Link

Risks of Data Poisoning and Manipulation in Generative AI Models, Especially ChatGPT

Generative AI models, particularly ChatGPT, face risks of data poisoning, leading to the generation of false results. This can result in the dissemination of misleading information, potentially impacting business decisions.
Reference URL: Springer Link

Learning Security Challenges from Examples

To deepen the understanding of security risks associated with generative AI, learning from actual cases is highly effective. For instance, there was a case where a company leaked confidential information due to inadequate security measures while analyzing customer data using generative AI. The root cause of this problem was that the security measures for the generative AI system did not sufficiently consider the confidentiality of the data. Additionally, there have been reports of cases where fake documents and images created by generative AI caused social turmoil. The lesson to be learned from these cases is how important it is to manage risks and strengthen security for generative AI technology. As measures, companies need to establish security guidelines for generative AI and thoroughly educate employees about handling data. Furthermore, regular security audits are required to promptly discover and address vulnerabilities in the system. In conclusion, referring to actual cases to enhance the awareness of security risks of generative AI and taking specific measures are crucial for companies.

Security Measures During the Use of Generative AI

Practical Risk Management and Response

Security measures when utilizing generative AI require practical risk management and response. This necessity arises from the need to safely exploit generative AI technology by identifying potential risks in advance and taking appropriate measures. For instance, to prevent the misuse of AI-generated content, the implementation of digital watermarking and content tracking technologies can be suggested. Furthermore, to counter the risks of unauthorized access and data breaches, employing robust authentication systems and encryption technologies is effective. Additionally, it is crucial for companies to conduct regular security training to enhance the security awareness of their employees. As a concrete example, there have been cases where service-providing companies using AI have combined these measures to protect customer data and maintain system security. In conclusion, companies utilizing generative AI can maximize the technology’s potential while minimizing risks by practically engaging in risk management and security measures.

Specific Steps for Accident Prevention

When utilizing generative AI, it is important to follow specific steps for accident prevention. First, conducting a security risk assessment for all AI projects is fundamental. This allows for the identification of project-specific risks and the planning of countermeasures. Next, implementing strict access control and data encryption to protect data and reduce the risk of confidential information leakage is crucial. Additionally, considering security from the design phase of the AI system and enhancing resistance to unauthorized inputs and operations are necessary. Furthermore, conducting regular security education and training for employees to improve security awareness is essential. As a practical example, there have been cases where companies providing customer services using generative AI have implemented these steps to prevent accidents proactively. In conclusion, for accident prevention, it is essential to follow specific steps from risk assessment to implementation and employee education to ensure the safe use of generative AI.

Constructing Effective Security Guidelines

Constructing effective security guidelines is a crucial step for companies utilizing generative AI. In essence, these guidelines provide a foundation for companies to manage security risks and ensure the safe use of AI technology. The reason is that security guidelines set clear standards and procedures, enabling companies to effectively respond to security challenges such as data protection, access management, and system vulnerabilities. For example, the guidelines may include rules for handling data used in training AI models, measures to prevent unauthorized access to AI systems, and processes for responding to incidents. Additionally, in formulating these guidelines, it’s necessary to consider industry standards and regulatory requirements to ensure alignment with the company-wide security policy. In practice, many companies have developed security guidelines and effectively managed the risks associated with generative AI. To reiterate, the construction of effective security guidelines is indispensable for minimizing risks associated with the use of generative AI and protecting corporate value.

In Japan, there are public guidelines such as the Generative AI Usage Guidelines issued by the Japan Deep Learning Association and the Text Generation AI Usage Guidelines by the Tokyo Metropolitan Government. Referring to these, companies or organizations can create guidelines tailored to their specific needs.

【Đôi điều cơ bản về RAG】Giải thích các kỹ thuật để cải thiện độ chính xác của AI tạo sinh!

Bạn đã biết đến RAG (Retrieval Augmented Generation) đang nhận được nhiều sự chú ý trong lĩnh vực AI tạo sinh chưa? RAG là công nghệ mới nhất được thiết kế để nâng cao độ chính xác của các câu trả lời từ LLMs (Mô hình Ngôn ngữ Lớn), và các nhà cung cấp đám mây lớn như AWS và Azure đang thúc đẩy việc triển khai nó. Bằng cách hiểu về cơ chế của RAG, có thể tạo ra các câu trả lời chất lượng cao hơn cả ChatGPT. Bài viết này sẽ giải thích chi tiết về cơ chế cơ bản của RAG, các ứng dụng cụ thể và các ví dụ.


Tổng quan về RAG

Nguyên lý cơ bản của RAG

RAG (Retrieval Augmented Generation) là một công nghệ đột phá, nâng cao đáng kể độ chính xác của các phản hồi từ AI tạo sinh. Công nghệ này dựa trên một cơ chế độc đáo, cải thiện chất lượng câu trả lời do Các Mô hình Ngôn ngữ Lớn (LLMs) cung cấp bằng cách khéo léo kết hợp thông tin từ các cơ sở dữ liệu và cơ sở kiến thức bên ngoài. 

Cụ thể, đối với các câu hỏi từ người dùng, RAG tìm kiếm động các thông tin bên ngoài liên quan và tái cấu trúc câu trả lời dựa trên thông tin này. Qua quá trình này, AI tạo sinh có thể cung cấp các câu trả lời chính xác hơn, đôi khi dựa trên thông tin mới nhất.

Chẳng hạn, AWS sử dụng công nghệ sáng tạo này để dựa vào dữ liệu và sự kiện cụ thể để phản hồi các mô hình như ChatGPT. Trong các dịch vụ của Azure, RAG được sử dụng để tạo ra các câu trả lời tùy chỉnh dựa trên kiến thức cụ thể của doanh nghiệp. Hơn nữa, Oracle cũng đã triển khai RAG để cải thiện đáng kể độ chính xác của các câu trả lời cho các câu hỏi đặc thù của doanh nghiệp.

Như các ví dụ cho thấy, RAG tối đa hóa tiềm năng của AI tạo sinh và LLMs, mở rộng đáng kể phạm vi và độ chính xác của các câu trả lời của chúng. Đáng chú ý, RAG đã trở thành công nghệ dễ tiếp cận hơn cho các nhà phát triển rộng rãi thông qua các nền tảng lớn như AWS và Azure. Điều này khiến RAG trở thành công nghệ đầy hứa hẹn và hấp dẫn đối với các kỹ sư có kinh nghiệm phát triển với API của ChatGPT hoặc Azure OpenAI Service.

Các yếu tố kỹ thuật và chức năng chính của RAG

Các yếu tố kỹ thuật cốt lõi của RAG (Retrieval Augmented Generation) nằm ở cơ chế tìm kiếm và tích hợp thông tin bên ngoài. Công nghệ đổi mới này nâng cao đáng kể chất lượng của các phản hồi được tạo ra bởi AI bằng cách xác định thông tin có liên quan nhất đối với một truy vấn cụ thể và khéo léo tích hợp nó vào hệ thống kiến thức của LLM (Mô hình Ngôn ngữ Lớn). Chức năng của RAG bao gồm việc cải thiện độ chính xác và kịp thời của thông tin, điều này làm cho các phản hồi mà nó tạo ra trở nên cụ thể và đáng tin cậy hơn.

Một vai trò đáng chú ý của RAG là khả năng mở rộng cơ sở kiến thức hiện có của LLM và làm cho các nguồn thông tin mới có sẵn. Ví dụ, AWS sử dụng RAG để trích xuất thông tin mới nhất từ các cơ sở dữ liệu dựa trên đám mây, và Azure sử dụng nó để tạo ra các phản hồi tùy chỉnh trong sự hợp tác với các cơ sở kiến thức đặc thù của công ty. Hơn nữa, Oracle sử dụng RAG để cung cấp các câu trả lời chuyên biệt cho các ngành hoặc lĩnh vực nhất định, từ đó mở rộng đáng kể khả năng áp dụng của AI tạo sinh.

Thêm vào đó, RAG có khả năng cải thiện đáng kể các tiêu chí quan trọng cho AI tạo sinh, như độ chính xác và liên quan của các phản hồi. Điều này là bởi vì AI tạo sinh tích cực sử dụng thông tin bên ngoài, không chỉ sở hữu kiến thức rộng lớn mà còn phát triển khả năng chọn lọc và điều chỉnh các phản hồi phù hợp nhất đối với các truy vấn cụ thể.

Như vậy, RAG cung cấp các yếu tố kỹ thuật và chức năng đổi mới cho AI tạo sinh và LLMs, cho phép các khả năng xử lý ngôn ngữ tự nhiên tiên tiến hơn và khả năng tạo phản hồi linh hoạt phù hợp với nhu cầu cá nhân. Điều này cho phép các kỹ sư phát triển các hệ thống tinh vi hơn trong khi hợp tác với các API hiện có như ChatGPT và Azure OpenAI Service.

Các ví dụ ứng dụng của công nghệ RAG

Giới thiệu ứng dụng theo từng ngành

Phạm vi ứng dụng của công nghệ RAG (Retrieval Augmented Generation) rộng lớn, và lợi ích của nó đang được nhận thức ngày càng rộng rãi trong nhiều ngành khác nhau. Công nghệ này cho phép cung cấp các câu trả lời tùy chỉnh phù hợp với các ngành và nhu cầu cụ thể bằng cách kết hợp khả năng của AI tạo sinh và LLMs (Mô hình Ngôn ngữ Lớn). Việc kết hợp kiến thức chuyên môn của từng ngành và tạo ra các câu trả lời chất lượng cao dựa trên thông tin đó là chức năng quan trọng của RAG.

Ví dụ, trong ngành y tế, RAG được sử dụng để cung cấp thông tin về các phát hiện nghiên cứu và phương pháp điều trị mới nhất cho bệnh nhân và nhân viên y tế. RAG có thể tìm thấy thông tin phù hợp từ các cơ sở dữ liệu y tế lớn và tích hợp nó vào LLMs để tạo ra các câu trả lời chi tiết và chính xác về các triệu chứng và bệnh cụ thể.

Trong lĩnh vực tài chính, RAG được sử dụng để cung cấp cho khách hàng thông tin mới nhất về xu hướng thị trường và các sản phẩm tài chính. Nó nhanh chóng kết hợp dữ liệu thị trường và xu hướng cụ thể, cho phép cung cấp các câu trả lời kịp thời và chính xác cho các yêu cầu của khách hàng.

Hơn nữa, trong lĩnh vực hỗ trợ khách hàng, RAG hữu ích trong việc quản lý các câu hỏi thường gặp và thông tin khắc phục sự cố liên quan đến sản phẩm và dịch vụ, cung cấp các câu trả lời chính xác cho các yêu cầu cụ thể của khách hàng. Điều này góp phần cải thiện sự hài lòng của khách hàng và hiệu quả hoạt động hỗ trợ.

Những ví dụ này cho thấy RAG mở rộng khả năng ứng dụng của AI tạo sinh và phục vụ như một công cụ có giá trị trong việc cung cấp các giải pháp cho các ngành và vấn đề cụ thể. Các kỹ sư được kỳ vọng sẽ xây dựng các cơ chế RAG phù hợp với nhu cầu đặc thù của ngành sử dụng các API hiện có như ChatGPT và Azure OpenAI Service, nhằm mục tiêu cung cấp dịch vụ chất lượng cao hơn.

Các ứng dụng thành công của RAG

Công nghệ RAG (Retrieval-Augmented Generation) đã mở rộng đáng kể phạm vi ứng dụng của AI tạo sinh với cách tiếp cận độc đáo của mình. Theo thông tin từ các công ty công nghệ lớn như AWS, Microsoft Azure và Oracle, RAG cải thiện đáng kể độ chính xác và kịp thời của thông tin, từ đó nâng cao trải nghiệm người dùng. Các nền tảng này sử dụng RAG để tối ưu hóa kết quả của các mô hình ngôn ngữ lớn (LLMs), cung cấp các câu trả lời liên quan hơn.

AWS cho biết RAG nâng cao tính liên quan và độ chính xác của các phản hồi bằng cách tham khảo các cơ sở kiến thức bên ngoài đáng tin cậy. Quá trình này cho phép người dùng nhận được thông tin dựa trên các nghiên cứu và tin tức mới nhất, do đó tăng cường lòng tin và sự hài lòng của họ.

Tại Microsoft Azure, việc tích hợp RAG trong Azure AI Search được nhấn mạnh để cải thiện độ chính xác của việc tìm kiếm thông tin trong các giải pháp doanh nghiệp. Đặc biệt, nó được ghi nhận về khả năng tạo ra các câu trả lời chính xác và cụ thể hơn cho các câu hỏi về nội dung và tài liệu nội bộ. Điều này trực tiếp góp phần vào hiệu quả của các quy trình kinh doanh và cuối cùng dẫn đến sự hài lòng tăng của khách hàng.

Oracle nêu rằng công nghệ RAG nâng cao chất lượng các chatbot và các hệ thống đối thoại khác, cho phép chúng cung cấp các câu trả lời kịp thời và phù hợp với ngữ cảnh cho người dùng. RAG giúp cho việc trích xuất và tìm kiếm dữ liệu nhanh chóng, cải thiện đáng kể khả năng tạo câu trả lời bởi LLMs.

Từ những thông tin này, rõ ràng là việc triển khai RAG đã đạt được kết quả đáng chú ý trong các lĩnh vực như hỗ trợ khách hàng, tìm kiếm doanh nghiệp, và AI đối thoại. Mặc dù không cung cấp các số liệu và dữ liệu cụ thể, nhưng tác động của công nghệ RAG là biến đổi, định nghĩa lại cách sử dụng AI tạo sinh và tối đa hóa tiềm năng của nó.

Triển khai và vận hành công nghệ RAG

RAG trong các dịch vụ điện toán đám mây chính

Amazon, Microsoft và Oracle cung cấp các dịch vụ và công cụ đa dạng để làm cho việc sử dụng công nghệ RAG (Retrieval-Augmented Generation) trở nên dễ dàng hơn. Các dịch vụ này nhằm mở rộng khả năng của AI tạo sinh và cho phép các kỹ sư tùy chỉnh nó cho các ứng dụng và nhu cầu kinh doanh cụ thể.

Amazon Web Services (AWS) hỗ trợ triển khai RAG thông qua một dịch vụ tìm kiếm doanh nghiệp gọi là Amazon Kendra. Amazon Kendra sử dụng xử lý ngôn ngữ tự nhiên (NLP) để trích xuất thông tin có ý nghĩa từ văn bản không cấu trúc và tích hợp nó vào quá trình tạo câu trả lời của Mô hình Ngôn ngữ Lớn (LLM). Dịch vụ này cho phép tích hợp trực tiếp với các cơ sở kiến thức và kho tài liệu của doanh nghiệp, cho phép sử dụng kết quả tìm kiếm làm đầu vào cho AI tạo sinh.

Microsoft Azure cung cấp một dịch vụ tìm kiếm gọi là Azure AI Search. Dịch vụ này hỗ trợ tìm kiếm vector và ngữ nghĩa, cho phép các kỹ sư lập chỉ mục nội dung của công ty thành dạng có thể tìm kiếm và sử dụng nó như một phần của mô hình RAG. Azure AI Search cung cấp một công cụ có giá trị để tích hợp nội dung doanh nghiệp vào quá trình tạo câu trả lời của AI tạo sinh, giúp tạo ra các câu trả lời có liên quan hơn.

Oracle hỗ trợ RAG thông qua dịch vụ OCI Generative AI chạy trên Oracle Cloud Infrastructure (OCI). Dịch vụ này cho phép tạo ra các mô hình AI tạo sinh có thể tùy chỉnh và sử dụng các tập dữ liệu và cơ sở kiến thức đặc thù của công ty. Các kỹ sư có thể sử dụng dịch vụ này để phát triển các ứng dụng AI tạo sinh phù hợp với nhu cầu kinh doanh và tích hợp thông tin cụ thể từ tổ chức vào quá trình tạo câu trả lời.

Từ góc độ kỹ thuật, các dịch vụ này cung cấp một nền tảng vững chắc cho các kỹ sư để triển khai linh hoạt cơ chế RAG và tối ưu hóa AI tạo sinh cho các mục đích cụ thể. Bằng cách tận dụng các tính năng độc đáo của từng nền tảng, các kỹ sư có thể khai thác tiềm năng của AI tạo sinh và cung cấp các dịch vụ thông tin chất lượng cao hơn.

Tiêu chuẩn chọn công nghệ RAG

Các tiêu chuẩn để chọn công nghệ RAG (Retrieval-Augmented Generation) là thiết yếu để các kỹ sư xác định giải pháp tốt nhất cho dự án hoặc nhu cầu tổ chức của họ. Quá trình lựa chọn tập trung vào khía cạnh kỹ thuật, hiệu quả chi phí, và dễ dàng tích hợp.

Đầu tiên, về mặt kỹ thuật, điều quan trọng là đánh giá liệu giải pháp RAG có cung cấp sự linh hoạt và khả năng tùy chỉnh để giải quyết các ứng dụng cụ thể hoặc thách thức đặc thù của ngành hay không. Cần xem xét các loại và định dạng dữ liệu mà công ty sở hữu và cách chúng có thể được tích hợp với AI tạo sinh. Ngoài ra, sự đa dạng của các nguồn thông tin được nhắm đến, tần suất cập nhật, và độ chính xác và liên quan của kết quả tìm kiếm là những yếu tố ảnh hưởng trực tiếp đến hiệu suất hệ thống.

Hiệu quả chi phí là một yếu tố quan trọng khác khi triển khai công nghệ RAG. Việc đào tạo và vận hành các mô hình ngôn ngữ lớn (LLMs) thường liên quan đến chi phí đáng kể, do đó chọn một giải pháp cung cấp giá trị tối đa trong ngân sách là thiết yếu. Điều này bao gồm việc xem xét giá cả của truy cập API do nền tảng cung cấp, chi phí của cơ sở hạ tầng cần thiết, và chi phí vận hành lâu dài.

Cuối cùng, dễ dàng tích hợp là tiêu chuẩn quan trọng. Đảm bảo rằng giải pháp RAG được chọn có thể được tích hợp một cách trơn tru vào các hệ thống và quy trình làm việc hiện có là liên kết trực tiếp đến thành công của dự án. Điều này đòi hỏi việc đánh giá tính toàn diện của tài liệu API, cơ cấu hỗ trợ cho các nhà phát triển, và khả năng tương thích với bộ ngăn xếp kỹ thuật hiện tại.

Dựa trên các tiêu chuẩn này, việc lựa chọn công nghệ RAG nên được thực hiện cẩn thận theo các yêu cầu và mục tiêu cụ thể của dự án. Chọn giải pháp tối ưu cho phép khai thác tiềm năng của AI tạo sinh và thực hiện các dịch vụ thông tin chất lượng cao hơn.

Các Bước Triển Khai Công Nghệ RAG

Việc triển khai công nghệ RAG (Retrieval-Augmented Generation) là bước quan trọng để các doanh nghiệp sử dụng AI tạo sinh để cung cấp thông tin chính xác hơn. Quá trình triển khai bao gồm nhiều giai đoạn chính, từ lập kế hoạch đến thực hiện và đánh giá. Dưới đây là các bước chính để triển khai công nghệ RAG một cách hiệu quả.

Bước đầu tiên là làm rõ mục tiêu. Xác định rõ mục đích triển khai RAG, các vấn đề mà nó nhằm giải quyết và giá trị mong đợi mang lại. Tại giai đoạn này, cần xem xét kỹ lưỡng nhu cầu của người dùng mục tiêu và các quy trình cần cải thiện.

Tiếp theo, đánh giá các yêu cầu kỹ thuật. Việc triển khai công nghệ RAG liên quan đến nhiều yêu cầu kỹ thuật, bao gồm việc lựa chọn nguồn dữ liệu phù hợp và khả năng tích hợp với các hệ thống hiện có. Đánh giá khả năng của các dịch vụ đám mây, cơ sở dữ liệu và mô hình AI có sẵn, và chọn bộ công nghệ phù hợp nhất với mục tiêu của dự án.

Sau đó, tạo kế hoạch triển khai. Dựa trên mục tiêu và yêu cầu kỹ thuật, phát triển một kế hoạch chi tiết cho việc triển khai. Kế hoạch này nên bao gồm lịch trình thực hiện, nguồn lực cần thiết, ngân sách và kế hoạch quản lý rủi ro. Vai trò và trách nhiệm của các thành viên trong nhóm cũng được định nghĩa tại giai đoạn này.

Trong giai đoạn thực hiện, bắt đầu xây dựng hệ thống RAG dựa trên kế hoạch. Điều này bao gồm chuẩn bị dữ liệu, đào tạo mô hình AI, tích hợp hệ thống và phát triển giao diện người dùng. Việc đánh giá và kiểm tra định kỳ là rất quan trọng trong quá trình thực hiện để phát hiện và xử lý sớm các vấn đề.

Cuối cùng, đánh giá và tối ưu hóa sau triển khai được thực hiện. Sau khi hệ thống được triển khai trong môi trường vận hành, hiệu suất của nó được đánh giá và thu thập phản hồi từ người dùng. Dựa trên thông tin này, việc cải thiện và tối ưu hóa hệ thống được tiến hành liên tục.

Thông qua các bước này, các công ty có thể triển khai thành công công nghệ RAG và khai thác tiềm năng của AI tạo sinh. Quá trình triển khai phức tạp và đa dạng, đòi hỏi một cách tiếp cận có kế hoạch và từng giai đoạn.