Installing and Using GPT-OSS 20B Locally with Ollama

In this document, we will explore how to install and run GPT-OSS 20B — a powerful open-weight language model released by OpenAI — locally, with detailed instructions for using it on a Tesla P40 GPU.

1. Quick Introduction to GPT-OSS 20B

  • GPT-OSS 20B is an open-weight language model from OpenAI, released in August 2025—the first since GPT-2—under the Apache 2.0 license, allowing free download, execution, and modification.

  • The model has about 21 billion parameters and can run efficiently on consumer machines with at least 16 GB of RAM or GPU VRAM.

  • GPT-OSS 20B uses a Mixture-of-Experts (MoE) architecture, activating only a subset of parameters (~3.6B) at each step, saving resources and energy.

  • The model supports chain-of-thought reasoning, enabling it to understand and explain reasoning processes step by step.


2. Hardware & Software Preparation

Hardware requirements:

  • RAM or VRAM: minimum 16 GB (can be system RAM or GPU VRAM).

  • Storage: around 12–20 GB for the model and data.

  • Operating system: macOS 11+, Windows, or Ubuntu are supported.

  • GPU (if available): Nvidia or AMD for acceleration. Without a GPU, the model still runs on CPU but very slowly.

Software options:

  • Ollama: the simplest method; quick installation with a convenient CLI.

  • LM Studio: a graphical interface, suitable for beginners.

  • Transformers + vLLM (Python): flexible for developers, integrates well into open-source pipelines.


3. How to Run GPT-OSS 20B with Ollama (GPU Tesla P40)

3.1 Goal and Timeline

  • Goal: successfully run GPT-OSS 20B locally using Ollama, leveraging the Tesla P40 GPU (24GB VRAM).

  • Timeline: the first setup takes about 15–20 minutes to download the model. After that, launching the model takes only a few seconds.

3.2 Environment Preparation

  • GPU: Tesla P40 with 24GB VRAM, sufficient for GPT-OSS 20B.

  • NVIDIA Driver: version 525 or higher recommended. In the sample logs, CUDA 12.0 works fine.

  • RAM: minimum 16GB.

  • Storage: at least 20GB free space; the model itself takes ~13GB plus cache.

  • Operating system: Linux (Ubuntu), macOS, or Windows. The following example uses Ubuntu.

3.3 Install Ollama

The fastest way:

curl -fsSL https://ollama.com/install.sh | sh

Or manually (Linux):

curl -LO https://ollama.com/download/ollama-linux-amd64.tgz
sudo tar -C /usr -xzf ollama-linux-amd64.tgz

Start the Ollama service:

OLLAMA_HOST=0.0.0.0:8888 ollama serve

When the log shows listening on [::]:8888, the server is ready.

3.4 Download GPT-OSS 20B

Open a new terminal and run:

OLLAMA_HOST=0.0.0.0:8888 ollama pull gpt-oss:20b

The first download is about 13GB. When the log shows success, the model is ready.

3.5 Run the Model

Start the model and try chatting:

OLLAMA_HOST=0.0.0.0:8888 ollama run gpt-oss:20b

Example:

>>> hi
Hello! 👋 How can I help you today?

3.6 Verify GPU Usage

Run:

nvidia-smi

Result: the Tesla P40 (24GB) consumes around 12–13GB VRAM for the process /usr/bin/ollama. The Ollama log also shows “offloading output layer to GPU” and “llama runner started in 8.05 seconds”, proving the model is running on GPU, not CPU.

3.7 Monitor API and Performance

Ollama exposes a REST API at http://127.0.0.1:8888.
Common endpoints include /api/chat and /api/generate.

Response times:

  • Short prompts: about 2–10 seconds.

  • Long or complex prompts: may take tens of seconds to a few minutes.


4. Conclusion

You have successfully run GPT-OSS 20B on a Tesla P40. The initial model download takes some time, but afterward it launches quickly and runs stably. With 24GB VRAM, the GPU can handle the large model without overload. While long prompts may still be slow, it is fully usable for real-world experiments and local project integration.

GPT-5: A Quantum Leap in Artificial Intelligence

OpenAI officially launched GPT-5, the most advanced model in its history. This wasn’t just a routine upgrade—it represented a bold leap toward a unified AI system capable of adapting seamlessly between fast, lightweight responses and deep, expert-level reasoning. With GPT-5, OpenAI introduced a model that could dynamically route between different reasoning modes, process multimodal inputs, and deliver results that rival (or even surpass) human experts in areas like coding, healthcare, mathematics, and complex reasoning.

1. From GPT-1 to GPT-5: The Rise of Smarter, Safer, and More Human AI

When OpenAI introduced GPT-1 in 2018, it was a relatively small model with 117 million parameters, capable only of handling basic natural language tasks. Yet, it planted the seed for what would later become a technological revolution.

In 2019, GPT-2 took a giant leap forward. With 1.5 billion parameters, it could generate surprisingly coherent and contextually relevant text. At that time, the public release was even delayed due to concerns over misuse—a sign of how powerful it was compared to what existed before.

Evolution of GPT Models

Then came GPT-3 (2020) with 175 billion parameters. This version made AI accessible to the world. From writing essays, generating code, to assisting in creative tasks, GPT-3 became the first version that truly entered daily workflows. It also laid the foundation for the rise of ChatGPT, which quickly became a household name.

By 2023, GPT-4 introduced multimodal capabilities—understanding not just text but also images, and later, even audio. This turned ChatGPT into a versatile tool: analyzing documents, describing pictures, and holding voice conversations. GPT-4 became the standard for AI in business, education, and creative industries.

In August 2025, OpenAI unveiled GPT-5, marking the next big chapter in this evolution. This wasn’t just a routine upgrade—it represented a bold leap toward a unified AI system capable of adapting seamlessly between fast, lightweight responses and deep, expert-level reasoning.

With GPT-5, OpenAI introduced a model that could dynamically route between different reasoning modes, process multimodal inputs, and deliver results that rival (or even surpass) human experts in areas like coding, healthcare, mathematics, and complex reasoning.

Unlike earlier generations where users had to choose between models (e.g., GPT-4 Turbo, GPT-4o, etc.), GPT-5 introduces a unified architecture:

  • Fast, efficient models for everyday, lightweight tasks.

  • Deep reasoning “thinking” models for complex queries requiring logical, multi-step analysis.

  • A real-time router that automatically determines which model (and reasoning mode) to invoke, based on query complexity, user intent, and even explicit instructions in the prompt like “think deeply about this.”

The user no longer has to make the choice—the model adapts dynamically, delivering both speed and quality without sacrificing one for the other.

GPT-5 handles more than just text. It processes images, code, structured data, and in some cases audio and video, depending on the platform and API integration. Early reports indicate GPT-5 can work with extremely large context windows—up to 1 million tokens—allowing it to analyze entire books, long meeting transcripts, or massive codebases in one go.

This makes GPT-5 especially valuable in fields that rely on long-form reasoning: research, law, education, and enterprise knowledge management.

2. Key Performance Gains

2.1. Coding and Software Development

GPT-5 achieves state-of-the-art results in software development tasks. It not only writes accurate code but also explains design decisions, reviews existing codebases, and suggests improvements. With larger context windows, developers can now feed entire repositories for refactoring or bug-fixing at once. This drastically reduces development cycles.

GPT-5 sets new records across programming tasks:

  • 74.9% on SWE-Bench Verified (up from GPT-4’s ~49%).

  • 88% on Aider Polyglot multi-language coding benchmark.

Developers using tools like Cursor, Windsurf, and Vercel AI SDK report GPT-5 is more “intuitive, coachable, and reliable” in generating, refactoring, and debugging code.

Developers now have more fine-grained control over outputs with new API parameters:

  • verbosity (low, medium, high) – adjust response length and detail

  • reasoning_effort (minimal, low, medium, high) – choose between deep reasoning or faster execution

Additionally, GPT-5 introduces custom tools that accept plain-text input instead of JSON and supports context-free grammar (CFG) constraints for structured outputs.

GPT-5 comes in multiple sizes via API—gpt-5, gpt-5-mini, and gpt-5-nano—allowing developers to balance performance, cost, and latency. There’s also a gpt-5-chat-latest variant (without reasoning) available in both ChatGPT and the API.

Compared to prior models, GPT-5 is more reliable in developer environments. It makes fewer errors, communicates its capabilities more honestly, and produces safer, more useful outputs.

2.2. Enterprise Integration

In enterprises, GPT-5 can summarize thousands of documents, generate compliance reports, or extract insights from structured and unstructured data. Early adopters report that tasks which took hours of manual effort can now be completed in minutes, enabling employees to focus on higher-value work.

Large organizations—including Amgen, BNY, California State University, Figma, Intercom, Lowe’s, Morgan Stanley, SoftBank, and T-Mobile—are integrating GPT-5 into workflows. The model helps reduce bottlenecks, automate repetitive knowledge tasks, and enable rapid analysis across documents, datasets, and customer interactions.

GPT-5 powers conversational agents that handle millions of customer queries with higher accuracy and empathy. It adapts tone based on context, offering professional responses for business and more casual ones for retail or lifestyle brands. Companies using GPT-5 in customer support have reported reduced ticket backlog and improved satisfaction scores.

2.3. Reduced Hallucinations

One of the biggest leaps is GPT-5’s dramatic reduction in hallucinations. Compared to GPT-4, the model is far less likely to invent citations, fabricate data, or misinterpret instructions.

Instead of flat refusals for sensitive queries, GPT-5 provides “safe completions”: careful, measured answers that maintain compliance without leaving the user frustrated.

2.4. Personalized Interaction

GPT-5 offers multiple interaction “modes”:

  • Fast — lightweight, quick responses.

  • Thinking — deliberate, structured, multi-step reasoning.

  • Pro — research-oriented responses at near-expert level.

In ChatGPT, OpenAI even added personalities like “Cynic,” “Listener,” and “Nerd,” allowing the model to engage in different tones and styles depending on the user’s preference.

2.5. Pricing and Access

  • Free users: GPT-5 is available with usage limits.

  • ChatGPT Plus ($20/month): expanded usage, including access to the reasoning modes.

  • ChatGPT Pro ($200/month): unlimited access to GPT-5 Pro, designed for heavy workloads like enterprise analytics, R&D, and coding at scale.

This tiered system allows accessibility for casual users while scaling to professional and enterprise needs.


3. Real-World Applications

3.1. Education and Research

GPT-5 introduces a “Study Mode” that helps students and educators plan lessons, explain complex concepts, and generate research outlines. Its expanded context window allows it to analyze large syllabi, research papers, or even historical archives in a single conversation.

It’s no exaggeration to say GPT-5 could become a “personal tutor at scale.”

3.2. Agentic Tasks

The model is designed for agent-like behavior: it can manage email, interact with Google Calendar, or execute workflows by connecting with external tools. Platforms like Botpress have already integrated GPT-5 to enable no-code AI agent creation, allowing businesses to deploy assistants without technical expertise.

3.3. Healthcare

On medical and scientific tasks, GPT-5 demonstrates expert-level reasoning. It can read radiology scans, summarize clinical guidelines, and even assist in drug discovery by analyzing molecular data. Compared to earlier models, GPT-5 shows fewer critical errors, making it more reliable as a decision-support system.

On medical benchmarks like MedQA, MedXpertQA, USMLE, and VQA-RAD, GPT-5 outperforms human experts and earlier models. It can analyze radiology images, provide diagnostic reasoning, and summarize clinical guidelines—all while adhering to strict safety and compliance protocols.

For the first time, an AI system is showing signs of being a trustworthy medical co-pilot.

4. Market Feedback

The launch of GPT-5 received significant attention across industries. While many praised its performance in technical benchmarks and enterprise adoption, some users noted that the model initially felt more “robotic” and less personable compared to GPT-4o. This created mixed impressions during the first weeks after release.

Among developers, GPT-5 was widely embraced thanks to its larger context window, reduced hallucinations, and flexible reasoning modes. Many open-source projects and AI startups quickly integrated it into workflows, citing massive productivity gains. However, some developers raised concerns about increased API costs when using higher reasoning levels.

Enterprises have been particularly positive, with companies like Microsoft and Oracle integrating GPT-5 into their flagship products. Reports indicate that customer support efficiency improved, compliance reporting became faster, and analytics workloads were streamlined. For many organizations, GPT-5 is now seen as a strategic investment in AI transformation.

For everyday users, GPT-5 was received with both excitement and skepticism. Many appreciated the deeper reasoning in education, coding help, and creative writing. Still, some preferred GPT-4o’s warmth and conversational style, pushing OpenAI to update GPT-5 with improved “human-like” interaction over time.

4.1. Positive Reception

  • Expert-level reasoning: Sam Altman described GPT-5 as “PhD-level expert intelligence.

  • Smooth UX: Reviewers compare GPT-5’s unified routing to the iPhone’s Retina display moment—a breakthrough that users didn’t know they needed until they experienced it.

4.2. Constructive Criticism

  • Some users feel GPT-5 lacks warmth and personality compared to GPT-4o, which had more conversational charm.

  • Others argue it’s an incremental upgrade rather than a radical breakthrough in creativity—especially in literature and artistic writing, where rivals like Anthropic’s Claude 4 show more flair.

  • The rollout faced hiccups: early bugs, occasional routing failures, and inconsistent access for some users created frustration.

5. The Road Ahead

GPT-5 is not the end, but a milestone. OpenAI has already signaled that work on GPT-6 and other specialized models is underway. The focus will likely be on deeper reasoning, multimodal integration across video, audio, and sensor data, and even more robust safeguards for safety and alignment.

For all its raw power, GPT-5 still struggles with emotional tone and creativity. Users want AI that feels alive and empathetic, not just efficient. The future may lie in combining reasoning with emotional intelligence.

Currently, GPT-5 does not “learn in real-time.” Updating its knowledge requires retraining, limiting its ability to adapt instantly. The next frontier for AGI will be continuous, safe online learning.

OpenAI faces rivals like Anthropic’s Claude 4, xAI’s Grok 4 Heavy, and Google DeepMind’s Gemini Ultra. To stay ahead, GPT-5 must balance cost, speed, creativity, and safety while expanding real-world impact.

6. Conclusion

GPT-5 isn’t just another model—it’s a system: fast when needed, deeply analytical when required, and adaptive across tasks from coding to healthcare. It marks OpenAI’s boldest move yet toward AGI.

But technology alone won’t decide GPT-5’s success. The real test lies in whether users feel trust, warmth, and creativity in their interactions. For AI to truly integrate into daily life, it must not only think like an expert but also connect like a human.

In the coming months and years, GPT-5 may well become the invisible engine powering education, business, and healthcare. And if OpenAI succeeds in blending intelligence with empathy, GPT-5 could be remembered as the moment AI became not just useful—but indispensable.