OpenAI DevDay 2025 Introduces Revolutionary AI Features & Comprehensive Analysis

 

OpenAI DevDay 2025

Revolutionary AI Features & Comprehensive Analysis

October 6, 2025 • San Francisco, CA

Event Information

📅
Date
October 6, 2025
📍
Location
Fort Mason, San Francisco
👥
Attendees
1,500+ Developers
🎤
Keynote Speaker
Sam Altman (CEO)
🌐
Official Website
🎥
Video Keynote

💡

OpenAI DevDay 2025 represents a pivotal moment in AI development history. This comprehensive analysis delves deep into the revolutionary features announced, examining their technical specifications, real-world applications, and transformative impact on the AI ecosystem. From ChatGPT Apps to AgentKit, each innovation represents a quantum leap forward in artificial intelligence capabilities.

📋 Executive Summary

  • New features/services: ChatGPT Apps; AgentKit (Agent Builder, ChatKit, Evals); Codex GA; GPT‑5 Pro API; Sora 2 API; gpt‑realtime‑mini.
  • What’s great: Unified chat‑first ecosystem, complete SDKs/kits, strong performance, built‑in monetization, and strong launch partners.
  • Impacts: ~60% faster dev cycles, deeper enterprise automation, one‑stop user experience, and a need for updated ethics/regulation.
  • Highlights: Live demos (Coursera, Canva, Zillow); Codex controlling devices/IoT/voice; Mattel partnership.
  • ROI: Better cost/perf (see Performance & Cost table) and new revenue via Apps.

Revolutionary Features Deep Dive

📱

ChatGPT Apps

Native Application Integration Platform

Overview

ChatGPT Apps represents the most revolutionary feature announced at DevDay 2025. This platform allows developers to create applications that run natively within ChatGPT, creating a unified ecosystem where users can access multiple services without leaving the conversational interface.

Core Capabilities

  • Apps SDK: Comprehensive development toolkit for seamless ChatGPT integration
  • Native Integration: Applications function as natural extensions of ChatGPT
  • Context Awareness: Full access to conversation context and user preferences
  • Real-time Processing: Instant app loading and execution within chat
  • Revenue Sharing: Built-in monetization model for developers
Technical Specifications

Status: Preview (Beta) – Limited access

API Support: RESTful API, GraphQL, WebSocket

Authentication: OAuth 2.0, API Keys, JWT tokens

Deployment: Cloud-native with auto-scaling

Performance: < 200ms app launch time

Security: End-to-end encryption, SOC 2 compliance

Real-World Applications

  • E-commerce: Complete shopping experience within chat (browse, purchase, track orders)
  • Travel Planning: Book flights, hotels, and create itineraries
  • Productivity: Project management, scheduling, note-taking applications
  • Entertainment: Games, media streaming, interactive experiences
  • Education: Learning platforms, tutoring, skill development

Transformative Impact

For Developers: Opens a massive new market with millions of ChatGPT users. Reduces development complexity by 60% through optimized SDK and infrastructure.

For Users: Creates a unified “super app” experience where everything can be accomplished in one interface, dramatically improving efficiency and reducing cognitive load.

For Market: Potentially disrupts traditional app distribution models, shifting from app stores to conversational interfaces.

🤖

AgentKit

Advanced AI Agent Development Framework

Overview

AgentKit is a sophisticated framework designed to enable developers to create complex, reliable AI agents capable of autonomous operation and multi-step task execution. This represents a significant advancement from simple AI tools to comprehensive automation systems.

Core Features

  • Persistent Memory: Long-term memory system for context retention across sessions
  • Advanced Reasoning: Multi-step logical analysis and decision-making capabilities
  • Task Orchestration: Complex workflow management and execution
  • Error Recovery: Automatic error detection and recovery mechanisms
  • Human Collaboration: Seamless human-AI interaction and handoff protocols
  • Performance Monitoring: Real-time analytics and optimization tools
Technical Architecture

Architecture: Microservices-based with event-driven design

Scalability: Horizontal scaling with intelligent load balancing

Security: Zero-trust architecture with end-to-end encryption

Integration: REST API, WebSocket, Message Queue support

Performance: Sub-second response times for most operations

Reliability: 99.9% uptime with automatic failover

Revolutionary Impact

Enterprise Automation: Transforms business operations through intelligent automation of complex workflows, potentially increasing efficiency by 300%.

Developer Productivity: Reduces development time for complex AI applications from months to weeks.

Decision Support: Enables real-time business intelligence and automated decision-making systems.

🎬

Sora 2 API

Next-Generation Video Generation Platform

Overview

Sora 2 represents a quantum leap in AI-generated video technology, offering unprecedented quality and control for video creation. Integrated directly into the API, it enables developers to incorporate professional-grade video generation into their applications.

Major Improvements over Sora 1

  • Quality Enhancement: 60% improvement in visual fidelity and realism
  • Extended Duration: Support for videos up to 15 minutes in length
  • Consistency: Dramatically improved temporal consistency and object tracking
  • Style Control: Advanced style transfer and artistic direction capabilities
  • Resolution: Native 4K support with HDR capabilities
  • Audio Integration: Synchronized audio generation and editing
Technical Specifications

Resolution: Up to 4K (3840×2160) with HDR support

Duration: Up to 15 minutes per video

Frame Rates: 24fps, 30fps, 60fps, 120fps

Formats: MP4, MOV, AVI, WebM

Processing Time: 3-8 minutes for 1-minute video

Audio: 48kHz, 16-bit stereo audio generation

Industry Transformation

Content Creation: Revolutionizes video production industry, reducing costs by 80% and production time by 90%.

Education: Enables creation of high-quality educational content at scale with minimal resources.

Marketing: Democratizes professional video marketing for small businesses and startups.

Entertainment: Opens new possibilities for personalized entertainment and interactive media.

Performance & Cost Analysis

Feature Cost Performance Primary Use Case ROI Impact
GPT-5 Pro $0.08/1K tokens 98%+ accuracy Professional, complex tasks 300% productivity increase
gpt-realtime-mini $0.002/minute <150ms latency Real-time voice interaction 70% cost reduction
gpt-image-1-mini $0.015/image 2-4 seconds High-volume image generation 80% cost reduction
Sora 2 API $0.60/minute 3-8 minutes processing Professional video creation 90% time reduction
ChatGPT Apps Revenue sharing <200ms launch Integrated applications New revenue streams

Live Demos Breakdown

🎓

Coursera Demo (00:05:58)

Educational Content Integration

The Coursera demo showcased how educational content can be seamlessly integrated into ChatGPT. Users can browse courses, enroll in programs, and access learning materials directly within the chat interface, creating a unified learning experience.

Key Features Demonstrated:

  • Course Discovery: AI-powered course recommendations based on user interests
  • Seamless Enrollment: One-click course enrollment without leaving ChatGPT
  • Progress Tracking: Real-time learning progress and achievement tracking
  • Interactive Learning: AI tutor assistance for course content and assignments

🎨

Canva Demo (00:08:42)

Design Tools Integration

The Canva demo illustrated how design tools can be integrated directly into ChatGPT, allowing users to create graphics, presentations, and marketing materials through natural language commands.

Key Features Demonstrated:

  • Natural Language Design: Create designs using conversational commands
  • Template Access: Browse and customize Canva templates within chat
  • Real-time Collaboration: Share and edit designs with team members
  • Brand Consistency: AI-powered brand guideline enforcement

🏠

Zillow Demo (00:11:23)

Real Estate Integration

The Zillow demo showcased how real estate services can be integrated into ChatGPT, enabling users to search for properties, schedule viewings, and get market insights through conversational AI.

Key Features Demonstrated:

  • Smart Property Search: AI-powered property recommendations based on preferences
  • Market Analysis: Real-time market trends and pricing insights
  • Virtual Tours: Schedule and conduct virtual property tours
  • Mortgage Calculator: Integrated financing and payment calculations

Launch Partners (00:14:41)

Strategic Launch Partners

OpenAI announced several key partnerships that will accelerate the adoption of ChatGPT Apps and AgentKit across various industries.

Enterprise Partners

  • Microsoft (Azure Integration)
  • Salesforce (CRM Integration)
  • HubSpot (Marketing Automation)
  • Slack (Team Collaboration)

Consumer Partners

  • Coursera (Education)
  • Canva (Design)
  • Zillow (Real Estate)
  • Spotify (Music)

Developer Partners

  • GitHub (Code Integration)
  • Vercel (Deployment)
  • Stripe (Payments)
  • Twilio (Communications)

Building “Ask Froggie” Agent (00:21:11 – 00:26:47)

🐸

Live Agent Development

Real-time Agent Building Process

The “Ask Froggie” demo showcased the complete process of building a functional AI agent from scratch using AgentKit, demonstrating the power and simplicity of the new development framework.

Development Process:

1. Agent Configuration

Define agent personality, capabilities, and response patterns using natural language prompts.

2. Workflow Design

Create conversation flows and decision trees using the visual Agent Builder interface.

3. Testing & Preview

Test agent responses and preview functionality before deployment (00:25:44).

4. Publishing

Deploy agent to production with one-click publishing (00:26:47).

Agent Capabilities:

  • Natural Conversation: Engaging, context-aware dialogue with users
  • Task Execution: Ability to perform complex multi-step tasks
  • Learning & Adaptation: Continuous improvement based on user interactions
  • Integration Ready: Seamless integration with external APIs and services

Codex Advanced Capabilities (00:34:19 – 00:44:20)

Camera Control (00:36:12)

Codex demonstrated its ability to control physical devices through code, including camera operations and image capture.

  • Real-time camera feed access
  • Automated image capture and processing
  • Computer vision integration

Xbox Controller (00:38:23)

Integration with gaming devices, enabling AI-powered game control and automation.

  • Gaming device automation
  • AI-powered game assistance
  • Accessibility features for gamers

Venue Lights (00:39:55)

IoT device control demonstration, showcasing Codex’s ability to manage smart lighting systems.

  • Smart lighting control
  • Automated venue management
  • Energy optimization

Voice Control (00:42:20)

Voice-activated coding and device control, enabling hands-free development and automation.

  • Voice-to-code conversion
  • Hands-free development
  • Accessibility features

Live Reprogramming (00:44:20)

Real-time application modification and debugging, showcasing Codex’s live coding capabilities.

  • Live code modification
  • Real-time debugging
  • Hot-swapping functionality

Mattel Partnership (00:49:59)

Revolutionary AI-Powered Toys

OpenAI announced a groundbreaking partnership with Mattel to create the next generation of AI-powered educational toys and interactive experiences.

Educational Toys

  • AI-powered learning companions
  • Personalized educational content
  • Interactive storytelling
  • Adaptive learning experiences

Interactive Features

  • Voice recognition and response
  • Computer vision capabilities
  • Emotional intelligence
  • Multi-language support

Safety & Privacy

  • Child-safe AI interactions
  • Privacy-first design
  • Parental controls
  • COPPA compliance

Expected Impact

This partnership represents a significant step toward making AI accessible to children in safe, educational, and engaging ways. The collaboration will create new standards for AI-powered toys and establish OpenAI’s presence in the consumer market.

Sam Altman’s Keynote Address

Revolutionary AI: The Future is Now

Sam Altman’s comprehensive keynote address covering the future of AI, revolutionary features, and OpenAI’s vision for the next decade

Complete Event Timeline

00:00:34

DevDay Introduction

Sam Altman welcomes attendees and sets the stage for revolutionary AI announcements.

00:01:02

OpenAI Growth

Overview of OpenAI’s exponential growth and user adoption statistics.

00:02:20

Announcement Overview

Preview of major announcements: ChatGPT Apps, AgentKit, Codex, and model updates.

00:03:32

Apps in ChatGPT

Introduction to the revolutionary ChatGPT Apps platform for native application integration.

00:03:45

Apps SDK Launch

Official launch of the Apps SDK for developers to build ChatGPT-integrated applications.

00:05:42

Live Demo Start

Beginning of live demonstrations showcasing real-world applications of ChatGPT Apps.

…and many more exciting announcements throughout the 51-minute keynote

Complete timeline available in the full video: Watch Full Keynote

Comprehensive Impact Analysis

For Developers

  • New Opportunities: Access to millions of ChatGPT users through Apps platform
  • Reduced Development Costs: 60% reduction in development time and resources
  • Monetization: Built-in revenue sharing model with OpenAI
  • Learning Curve: Need to master new technologies and best practices
  • Competition: Increased competition in the AI application market
  • Innovation: Ability to create previously impossible applications

For Enterprises

  • Automation Revolution: 70% automation of repetitive business processes
  • Customer Experience: Dramatically improved customer service and engagement
  • Cost Reduction: 50% reduction in operational costs
  • Data Security: Need for enhanced security and compliance measures
  • Workforce Transformation: Reskilling and restructuring of human resources
  • Competitive Advantage: Early adopters gain significant market advantages

For End Users

  • Unified Experience: Everything accessible through a single interface
  • Personalization: Highly customized and adaptive user experiences
  • Accessibility: AI-powered assistance for users with disabilities
  • Learning Acceleration: Faster skill development and knowledge acquisition
  • Privacy Considerations: Need to balance convenience with privacy
  • Digital Literacy: Adaptation to new AI-powered interfaces

For Society

  • Digital Divide: Potential widening of technological inequality
  • Job Market Transformation: Fundamental changes in employment structure
  • Education Revolution: AI-powered personalized learning systems
  • Healthcare Advancement: Improved medical diagnosis and treatment
  • Governance Evolution: Need for new regulatory frameworks
  • Economic Impact: Potential for significant GDP growth through AI adoption

Future Predictions & Roadmap

Development Timeline (2025-2030)

Short-term (6-12 months)

  • Mass Adoption: Millions of ChatGPT Apps will be developed and deployed
  • Enterprise Integration: 80% of Fortune 500 companies will integrate AI into core workflows
  • Developer Ecosystem: AI developer tools market will grow by 400%
  • Regulatory Framework: Comprehensive AI regulations will be established globally
  • Performance Improvements: 50% improvement in AI model efficiency and speed

Medium-term (1-3 years)

  • AI-First Applications: Applications designed from the ground up with AI as the core
  • Autonomous Agents: AI agents operating independently across multiple domains
  • Multimodal AI: Seamless processing of text, image, audio, and video simultaneously
  • Edge AI: High-performance AI running on personal devices
  • Quantum Integration: AI models leveraging quantum computing capabilities

Long-term (3-5 years)

  • AGI Development: Significant progress toward Artificial General Intelligence
  • AI-Human Collaboration: New paradigms of human-AI partnership
  • Economic Transformation: Fundamental changes in economic systems and structures
  • Social Impact: AI solving major global challenges (climate, health, education)
  • Consciousness Research: Advances in understanding AI consciousness and ethics

Challenges & Risk Assessment

Technical Challenges

  • Scalability: Managing millions of concurrent AI requests and maintaining performance
  • Latency: Achieving real-time response times for complex AI operations
  • Quality Control: Ensuring consistent output quality across all AI models
  • Resource Management: Optimizing computational resources and energy consumption
  • Integration Complexity: Seamlessly integrating multiple AI systems

Social Challenges

  • Job Displacement: Managing the transition as AI replaces human workers
  • Privacy Concerns: Protecting personal data in AI-powered systems
  • Bias and Fairness: Ensuring AI systems are unbiased and fair
  • Digital Divide: Preventing AI from widening social inequalities
  • Ethical AI: Developing and maintaining ethical AI practices

Regulatory Challenges

  • Compliance: Meeting evolving regulatory requirements across jurisdictions
  • Intellectual Property: Defining ownership rights for AI-generated content
  • Liability: Determining responsibility when AI systems cause harm
  • International Standards: Harmonizing AI regulations globally
  • Security Standards: Establishing cybersecurity requirements for AI systems

Conclusion

OpenAI DevDay 2025 represents a watershed moment in the evolution of artificial intelligence. The revolutionary features announced—from ChatGPT Apps to AgentKit and Sora 2—signal a fundamental shift from AI as a tool to AI as an integrated platform that permeates every aspect of our digital lives.

These innovations are not merely incremental improvements but represent quantum leaps in capability, accessibility, and integration. The convergence of advanced language models, multimodal processing, and seamless application integration creates unprecedented opportunities for developers, businesses, and end users alike.

However, with these opportunities come significant responsibilities. The rapid advancement of AI capabilities requires careful consideration of ethical implications, social impact, and regulatory frameworks. As we stand at the threshold of this new era, it is imperative that we approach AI development with wisdom, foresight, and a commitment to benefiting all of humanity.

The future of AI is not just about technological advancement—it’s about creating a world where artificial intelligence enhances human potential, solves complex problems, and creates opportunities for unprecedented growth and innovation.

About This Analysis

Author: AI Quest Research Team

Publication Date: October 13, 2025

Category: AI Technology Analysis, OpenAI, DevDay 2025

Sources: openai.com/devday | YouTube Keynote

Methodology: Comprehensive analysis based on official announcements, technical specifications, and industry impact assessment

#OpenAI
#DevDay2025
#AI
#GPT5
#Sora2
#AgentKit
#Codex
#ChatGPT
#AIAnalysis
#Technology
#Innovation
#Future

 

Best-of-∞: Hiệu Suất Tiệm Cận của Tính Toán Thời Gian Thử Nghiệm

Nghiên cứu đột phá về phương pháp tối ưu hóa hiệu suất LLM với Adaptive Generation và Weighted Ensemble

📝 Tóm Tắt

Chúng tôi nghiên cứu phương pháp Best-of-N cho các mô hình ngôn ngữ lớn (LLMs) với việc lựa chọn dựa trên bỏ phiếu đa số.
Đặc biệt, chúng tôi phân tích giới hạn khi N tiến đến vô cùng, mà chúng tôi gọi là Best-of-∞.
Mặc dù phương pháp này đạt được hiệu suất ấn tượng trong giới hạn, nó đòi hỏi thời gian tính toán vô hạn.
Để giải quyết vấn đề này, chúng tôi đề xuất một sơ đồ sinh câu trả lời thích ứng chọn số lượng N dựa trên sự đồng thuận của câu trả lời,
từ đó phân bổ hiệu quả tài nguyên tính toán. Ngoài tính thích ứng, chúng tôi mở rộng khung làm việc đến các
tổ hợp có trọng số của nhiều LLMs, cho thấy rằng các hỗn hợp như vậy có thể vượt trội hơn bất kỳ mô hình đơn lẻ nào.
Trọng số tổ hợp tối ưu được xây dựng và tính toán hiệu quả như một bài toán lập trình tuyến tính hỗn hợp nguyên.

🚀 Giới Thiệu

Trong những năm gần đây, chúng ta đã chứng kiến những tiến bộ đáng kể trong lĩnh vực Large Language Models (LLMs),
từ các mô hình đóng như Gemini, GPT, Claude đến các mô hình mã nguồn mở như Llama, DeepSeek, Qwen.
Một trong những mối quan tâm lớn nhất trong lĩnh vực LLMs là khả năng thực hiện các nhiệm vụ suy luận phức tạp.

Việc sử dụng nhiều tài nguyên tính toán hơn tại thời điểm kiểm tra, đặc biệt bằng cách tạo ra nhiều câu trả lời,
dẫn đến suy luận đáng tin cậy hơn. Một chiến lược đơn giản nhưng hiệu quả là phương pháp Best-of-N (BoN),
nơi chúng ta tạo ra N câu trả lời và chọn câu trả lời tốt nhất dựa trên một số tiêu chí.

Hình 1: Độ chính xác của Best-of-N với bỏ phiếu đa số theo hàm của N (GPT-OSS-20B) với bốn datasets.
Đường màu xanh lá chỉ ra độ chính xác tiệm cận của N→∞.

Có nhiều cách để triển khai chiến lược BoN. Một cách tiếp cận phổ biến là sử dụng reward model để chọn câu trả lời tốt nhất
hoặc yêu cầu LLM chọn câu trả lời ưa thích. Một cách tiếp cận khác là bỏ phiếu đa số trong đó câu trả lời xuất hiện
thường xuyên nhất được chọn.

Mặc dù đơn giản, bỏ phiếu đa số có nhiều ưu điểm. Đầu tiên, nó không yêu cầu mô hình hóa bổ sung hoặc tạo văn bản thêm.
Thứ hai, so với các phương pháp khác, bỏ phiếu đa số có khả năng chống lại reward hacking và hưởng lợi từ việc tạo thêm với rủi ro tối thiểu,
không giống như các mô hình dựa trên reward nơi việc tăng N có thể dẫn đến overfitting.

Minh họa adaptive sampling

Hình 2: Minh họa adaptive sampling (Algorithm 1). Histogram cho thấy phân phối các câu trả lời được tạo bởi LLM cho một bài toán đơn lẻ.
Màu xanh dương chỉ ra câu trả lời xuất hiện nhiều nhất, màu cam chỉ ra các câu trả lời khác.

Mặc dù chúng ta mong muốn đạt được hiệu suất Best-of-N như vậy khi N→∞, mà chúng ta gọi là hiệu suất Best-of-∞,
nó đòi hỏi một số lượng vô hạn các thế hệ (mẫu), điều này không khả thi trong các tình huống thực tế.
Tuy nhiên, với cùng ngân sách thời gian kiểm tra, chúng ta có thể sử dụng ngân sách có sẵn hiệu quả hơn.
Như được thể hiện trong Hình 2, chúng ta có thể tạo mẫu một cách thích ứng cho đến khi chúng ta xác định được đa số với một mức độ tin cậy nào đó.

Sơ đồ của chúng tôi có thể được mở rộng tự nhiên đến các tổ hợp của nhiều LLMs. Quan trọng là, bỏ phiếu đa số tổ hợp có thể tự nhiên
hưởng lợi từ tính bổ sung. Ví dụ, trong dataset AIME2025, hiệu suất Best-of-∞ của GPT-OSS-20B và Nemotron-Nano-9B-v2 lần lượt là 90.0% và 73.0%,
nhưng tổ hợp của chúng đạt được 93.3%. Một LLM yếu có thể đóng góp vào tổ hợp nếu nó có điểm mạnh bổ sung.

♾️ Best-of-∞ trong Mẫu Hữu Hạn

Trong khi Best-of-∞ định nghĩa một tổ hợp Best-of-N lý tưởng trong giới hạn N→∞, việc thực hiện theo nghĩa đen sẽ đòi hỏi
tính toán thời gian kiểm tra không giới hạn. Bây giờ chúng tôi phát triển một quy trình mẫu hữu hạn theo dõi chặt chẽ giới hạn này.

Ý tưởng cốt lõi của chúng tôi là lấy mẫu thích ứng (tức là yêu cầu LLM tạo ra câu trả lời) cho đến khi chúng ta chắc chắn
về bỏ phiếu đa số dân số với mức độ tin cậy mong muốn. Nói cách khác, chúng ta nhằm mục đích kết thúc quá trình tạo câu trả lời
ngay khi có đủ bằng chứng thống kê để hỗ trợ kết luận rằng phản hồi hiện tại xuất hiện thường xuyên nhất tương ứng với đa số thực sự,
điều này cho phép số lượng N khác nhau trên các vấn đề.

Một thách thức đặc biệt của vấn đề này nằm ở thực tế là hỗ trợ của phân phối câu trả lời được tạo bởi các mô hình ngôn ngữ lớn (LLMs)
là không xác định. Ví dụ, trong một trường hợp, LLM có thể tạo ra hai câu trả lời ứng viên, chẳng hạn như 42 với xác suất 70% và 105 với xác suất 30%,
trong khi trong trường hợp khác, nó có thể tạo ra bốn đầu ra riêng biệt, chẳng hạn như 111 với xác suất 40%, 1 với xác suất 25%,
2 với xác suất 20%, và 702 với xác suất 15%.

Với sự không chắc chắn như vậy trong sự thay đổi của các phản hồi được tạo, một cách tiếp cận đặc biệt phù hợp là sử dụng
mô hình hóa Bayesian không tham số. Đặc biệt, chúng tôi áp dụng một quy trình Dirichlet DP(H,α) trước trên không gian câu trả lời
nắm bắt phân phối không xác định của các câu trả lời. Ở đây, H là phân phối cơ sở trên không gian câu trả lời, và α > 0 là tham số tập trung
kiểm soát khả năng tạo ra câu trả lời mới.

🔧 Algorithm 1: Approximated Best-of-∞

Input: Maximum samples N_max, concentration parameter α, Bayes factor threshold B
1: for n = 1, 2, … do
2:   if using LLM Ensemble then
3:     Choose LLM with probability {w_i}_{i∈𝒦}
4:   end if
5:   Generate answer using selected LLM
6:   if n ≥ N_max then
7:     return majority answer
8:   end if
9:   Compute Bayes factor B_n
10:   if B_n ≥ B then
11:     return majority answer
12:   end if
13: end for
14: return The most frequent answer

Chúng tôi sử dụng Bayes factor để đo lường bằng chứng của đa số thực sự. Chính thức, chúng tôi định nghĩa các giả thuyết như sau:

📊 Định Nghĩa Giả Thuyết

H₀: Câu trả lời xuất hiện thường xuyên nhất A₁ không phải là đa số thực sự.

H₁: Câu trả lời xuất hiện thường xuyên nhất A₁ là đa số thực sự.

Bayes Factor: BF = P(D(n)|H₁) / P(D(n)|H₀)

Khi n đủ lớn so với α, P(H₁|D(n)) của posterior DP có thể được xấp xỉ bằng phân phối Dirichlet.
Mặc dù số lượng này không dễ tính toán, nó có thể được ước tính bằng các phương pháp Monte Carlo bằng cách lấy mẫu từ phân phối Dirichlet.

🎯 Định Lý 1: Sự Hội Tụ

Nếu chúng ta đặt N_max và B đủ lớn, hiệu suất của thuật toán hội tụ đến hiệu suất Best-of-∞.
Điều này đảm bảo rằng phương pháp adaptive sampling của chúng ta có thể đạt được hiệu suất gần như tối ưu
với số lượng mẫu hữu hạn.

🤝 Tổ Hợp LLM

🎯 Best-of-One

Trong phần này, chúng tôi mở rộng khung làm việc Best-of-∞ đến các tổ hợp có trọng số của nhiều LLMs.
Giả sử chúng ta có K LLMs khác nhau, mỗi LLM có thể tạo ra các câu trả lời khác nhau cho cùng một câu hỏi.
Mục tiêu của chúng ta là tìm ra cách kết hợp các LLMs này để đạt được hiệu suất tối ưu.

♾️ Best-of-∞

Câu hỏi trung tâm của chúng ta là làm thế nào để chọn một vector trọng số w tối đa hóa độ chính xác f(w).
Lemma sau đây ngụ ý độ khó của việc tối ưu hóa f(w).

📝 Lemma 2: Non-concavity

f(w) là một hàm không lồi trên không gian simplex của w. Điều này có nghĩa là các phương pháp dựa trên gradient
sẽ không thể tìm ra giải pháp tối ưu toàn cục.

Visualization của non-concave objective function

Hình 3: Visualization của hàm mục tiêu không lồi f(w) trên weight simplex w.
Simplex màu vàng tương ứng với w trong simplex của các trọng số của ba LLMs.

Mặc dù non-concavity ngụ ý tính tối ưu dưới của các phương pháp dựa trên gradient, một cách tiếp cận tối ưu hóa tổ hợp
có thể được áp dụng cho các trường hợp có quy mô điển hình. Điểm mấu chốt trong việc tối ưu hóa f(w) là tổng trong phương trình
nhận giá trị một trong một polytope.

📝 Lemma 3: Polytope Lemma

Cho {p^q_ij} là các phân phối tùy ý của các câu trả lời. Khi đó, tập hợp sau, ngụ ý rằng câu trả lời j là câu trả lời
xuất hiện thường xuyên nhất, là một polytope: {w ∈ Δ_K : Σ_i w_i p^q_ij > max_{j’≠j} Σ_i w_i p^q_ij’}

Lemma 3 nói rằng việc tối đa hóa số lượng câu trả lời đúng tương đương với việc tối đa hóa số lượng polytopes chứa w.
Bằng cách giới thiệu biến phụ y_q chỉ ra tính đúng đắn cho mỗi câu trả lời, điều này có thể được xây dựng như một
bài toán lập trình tuyến tính hỗn hợp nguyên (MILP).

📝 Lemma 4: MILP Formulation

Việc tối đa hóa f(w) tương đương với bài toán MILP sau:

max Σ_q y_q

s.t. w_i ≥ 0 ∀_i, Σ_i w_i = 1, A_q w ≥ -m(1-y_q) ∀q

trong đó A_q là ma trận kích thước ℝ^{|𝒜_q|×K}

⚖️ Max Margin Solutions

Như chúng tôi đã minh họa trong Hình 3, hàm mục tiêu f(w) có vùng liên tục của các giải pháp tối ưu.
Trong khi bất kỳ điểm nội thất nào trên vị trí này đều tối ưu trong Best-of-∞, hiệu suất hữu hạn-N của nó có thể thay đổi.
Trong bài báo này, chúng tôi áp dụng giải pháp “max margin”, tức là ở phần nội thất nhất của giải pháp.

Cụ thể, chúng tôi giới thiệu margin ξ > 0 và thay thế A_q w trong phương trình với A_q w – ξ.
Chúng tôi chọn supremum của margin ξ sao cho giá trị mục tiêu Σ_q y_q không giảm, và áp dụng giải pháp trên margin như vậy.

🧪 Thí Nghiệm

Phần này báo cáo kết quả thí nghiệm của chúng tôi. Chúng tôi xem xét các nhiệm vụ suy luận nặng trên các LLMs mã nguồn mở
mà chúng tôi có thể kiểm tra trong môi trường cục bộ của mình. Chúng tôi đặt siêu tham số α = 0.3 của Algorithm 1 cho tất cả các thí nghiệm.

Để giải MILPs, chúng tôi sử dụng highspy, một giao diện Python mã nguồn mở cho bộ tối ưu hóa HiGHS,
cung cấp các solver tiên tiến cho LP, MIP và MILP quy mô lớn. Chúng tôi áp dụng giải pháp max-margin được mô tả trong Phần 3.2.
Trừ khi được chỉ định khác, tất cả kết quả được ước tính từ 100 lần chạy độc lập. Bayes factor được tính toán với 1,000 mẫu Monte Carlo từ posterior.

📊 LLMs và Datasets Được Test

Chúng tôi đánh giá các LLMs mã nguồn mở (≤ 32B tham số) trên bốn benchmark suy luận. Chúng tôi sử dụng các bộ vấn đề sau:
AIME2024, AIME2025, GPQA-DIAMOND (Graduate-Level Google-Proof Q&A Benchmark), và MATH500.
Các datasets này là các nhiệm vụ suy luận toán học và khoa học đầy thách thức.

📈 Large-scale Generation Dataset

Chúng tôi tạo ra một tập hợp các câu trả lời ứng viên bằng cách truy vấn LLM với câu lệnh vấn đề.
Cho mỗi cặp (LLM, vấn đề), chúng tôi tạo ra ít nhất 80 câu trả lời—một bậc độ lớn lớn hơn 8 thế hệ điển hình
được báo cáo trong hầu hết các báo cáo kỹ thuật LLM. Chúng tôi tin rằng độ khó của các vấn đề cũng như quy mô
của các token được tạo ra đáng kể lớn hơn công việc hiện có về tính toán thời gian kiểm tra.

📊 Thống Kê Dataset

LLM # Files Total Tokens File Size (MB)
AM-Thinking-v1 4,800 79,438,111 185.95
Datarus-R1-14B-preview 4,800 49,968,613 127.03
EXAONE-Deep-32B 60,640 478,575,594 1,372.35
GPT-OSS-20B 68,605 244,985,253 98.59
LIMO-v2 6,095 77,460,567 219.45
MetaStone-S1-32B 4,800 79,438,111 185.95
NVIDIA-Nemotron-Nano-9B-v2 4,800 79,438,111 185.95
Phi-4-reasoning 4,800 79,438,111 185.95
Qwen3-4B 4,800 79,438,111 185.95
Qwen3-14B 4,800 79,438,111 185.95
Qwen3-30B-A3B-Thinking-2507 4,800 79,438,111 185.95

📊 Kết Quả Thí Nghiệm

🎯 Experimental Set 1: Hiệu Quả của Adaptive Sampling

Trong thí nghiệm đầu tiên, chúng tôi so sánh hiệu quả của phương pháp adaptive sampling với phương pháp fixed BoN.
Kết quả cho thấy rằng Algorithm 1 với kích thước mẫu trung bình N̄=3 đạt được độ chính xác tương tự như fixed sample của N=10,
cho thấy hiệu quả đáng kể của adaptive sampling.

🤝 Experimental Set 2: Ưu Thế của LLM Ensemble

Thí nghiệm thứ hai chứng minh ưu thế của tổ hợp LLM so với mô hình đơn lẻ. Chúng tôi kết hợp năm LLMs:
EXAONE-Deep-32B, MetaStone-S1-32B, Phi-4-reasoning, Qwen3-30B-A3B-Thinking, và GPT-OSS-20B trên GPQA-Diamond.
Trọng số được tối ưu hóa thành w=(0.0176,0.0346,0.2690,0.4145,0.2644). Tổ hợp LLM vượt trội hơn bất kỳ mô hình đơn lẻ nào với N≥5.

⚖️ Experimental Set 3: Học Trọng Số Tốt

Thí nghiệm thứ ba khám phá việc học trọng số tối ưu từ dữ liệu. Chúng tôi sử dụng số lượng mẫu khác nhau để xác định trọng số
và đo hiệu suất Best-of-∞ trên AIME2025. Kết quả cho thấy rằng chỉ cần một số lượng mẫu tương đối nhỏ là đủ để học được trọng số tốt.

🔄 Experimental Set 4: Transfer Learning của Trọng Số Tối Ưu

Thí nghiệm thứ tư khám phá khả năng transfer learning của trọng số được học từ một dataset sang dataset khác.
Kết quả cho thấy rằng trọng số được học từ một dataset có thể được áp dụng hiệu quả cho các dataset khác,
cho thấy tính tổng quát của phương pháp.

📊 Experimental Set 5: So Sánh với Các Phương Pháp Chọn Câu Trả Lời Khác

Thí nghiệm cuối cùng so sánh phương pháp của chúng tôi với các phương pháp chọn câu trả lời khác, bao gồm LLM-as-a-judge,
reward models, và self-certainty. Kết quả cho thấy Majority Voting đạt hiệu suất cao thứ hai sau Omniscient,
vượt trội hơn các phương pháp khác.

📈 Kết Quả Hiệu Suất Chi Tiết

LLM AIME2024 AIME2025 GPQA-D MATH500
AM-Thinking-v1 0.867 0.867 0.707 0.950
EXAONE-Deep-32B 0.867 0.767 0.692 0.962
GPT-OSS-20B 0.900 0.900 0.722 0.960
MetaStone-S1-32B 0.867 0.800 0.707 0.950
NVIDIA-Nemotron-Nano-9B-v2 0.867 0.733 0.626 0.956
Phi-4-reasoning 0.867 0.833 0.727 0.944
Qwen3-30B-A3B-Thinking-2507 0.933 0.900 0.732 0.960

Method AIME2025 (%) Mô Tả
Omniscient 91.04 ± 1.32 Lý thuyết: luôn chọn đúng nếu có trong candidates
Majority Voting 85.42 ± 2.01 Chọn câu trả lời xuất hiện nhiều nhất
LLM-as-a-judge (tournament) 82.92 ± 2.57 So sánh từng cặp câu trả lời
LLM-as-a-judge (set) 81.25 ± 2.42 So sánh tất cả câu trả lời cùng lúc
INF-ORM-Llama3.1-70B 79.79 ± 2.54 Reward model đứng thứ 9 RewardBench
Skywork-Reward-V2-Llama-3.1-8B 79.79 ± 2.47 Reward model đứng thứ 1 RewardBench
Skywork-Reward-V2-Qwen3-8B 80.00 ± 2.51 Reward model đứng thứ 6 RewardBench
Self-certainty 75.83 ± 2.47 Chọn câu trả lời có confidence cao nhất
Random (≈ Bo1) 76.25 ± 2.71 Chọn ngẫu nhiên (baseline)

Kết quả cho thấy Majority Voting đạt hiệu suất cao thứ hai sau Omniscient,
vượt trội hơn các phương pháp dựa trên reward model và LLM-as-a-judge. Điều này chứng minh tính hiệu quả
của phương pháp đơn giản nhưng mạnh mẽ này.

🔍 Phát Hiện Chính

✅ Hiệu Quả Adaptive Sampling

Phương pháp adaptive sampling giảm đáng kể số lượng thế hệ cần thiết
trong khi vẫn duy trì hiệu suất cao. Algorithm 1 với N̄=3 đạt được
độ chính xác tương tự như fixed sample của N=10, cho thấy hiệu quả
tính toán đáng kể.

🤝 Ưu Thế Ensemble

Tổ hợp có trọng số của nhiều LLMs vượt trội hơn bất kỳ mô hình đơn lẻ nào,
đặc biệt khi có tính bổ sung. Ensemble đạt 93.3% so với 90.0% của mô hình tốt nhất,
chứng minh giá trị của việc kết hợp các mô hình.

⚖️ Tối Ưu Hóa Trọng Số

Việc tối ưu hóa trọng số ensemble được giải quyết hiệu quả
như một bài toán MILP, cho phép tìm ra trọng số tối ưu một cách có hệ thống.
Phương pháp max-margin đảm bảo tính ổn định cho các ứng dụng thực tế.

📊 Quy Mô Lớn

Thí nghiệm với 11 LLMs và 4 datasets, tổng cộng hơn 3,500 thế hệ
cho mỗi kết hợp LLM–dataset, đại diện cho quy mô lớn nhất trong nghiên cứu hiện tại.
Dataset này sẽ được phát hành cho nghiên cứu tiếp theo.

💡 Insights Quan Trọng

  • Bayes Factor hiệu quả: Phương pháp Bayes Factor cho phép dừng adaptive sampling một cách thông minh,
    tiết kiệm tài nguyên tính toán đáng kể.
  • Tính bổ sung của LLMs: Các LLMs yếu có thể đóng góp tích cực vào ensemble nếu chúng có điểm mạnh bổ sung.
  • Transfer learning: Trọng số được học từ một dataset có thể được áp dụng hiệu quả cho các dataset khác.
  • Robustness: Majority voting robust hơn các phương pháp dựa trên reward model và ít bị ảnh hưởng bởi reward hacking.

🎯 Kết Luận

Trong bài báo này, chúng tôi xem chiến lược Best-of-N với bỏ phiếu đa số như việc lấy mẫu từ
phân phối câu trả lời cơ bản, với hiệu suất Best-of-∞ được định nghĩa tự nhiên.
Để xấp xỉ giới hạn này với một số lượng hữu hạn các mẫu, chúng tôi giới thiệu một phương pháp lấy mẫu thích ứng dựa trên Bayes Factor.

Chúng tôi cũng nghiên cứu vấn đề tổng hợp phản hồi từ nhiều LLMs và đề xuất một bỏ phiếu đa số
tận dụng hiệu quả điểm mạnh của các mô hình cá nhân. Hiệu suất Best-of-∞ có ưu thế vì trọng số của
tổ hợp LLM có thể được tối ưu hóa bằng cách giải một bài toán lập trình tuyến tính hỗn hợp nguyên.

Các thí nghiệm rộng rãi của chúng tôi chứng minh hiệu quả của phương pháp được đề xuất.
Chúng tôi đã thử nghiệm với 11 LLMs được điều chỉnh theo hướng dẫn và bốn bộ vấn đề suy luận nặng,
với ít nhất 80 thế hệ cho mỗi kết hợp LLM–bộ vấn đề. Điều này đại diện cho quy mô lớn hơn đáng kể
của tính toán thời gian kiểm tra so với công việc trước đây.

🚀 Tác Động và Ý Nghĩa

Nghiên cứu này mở ra những khả năng mới trong việc tối ưu hóa hiệu suất LLM thông qua
adaptive generation và weighted ensemble, đặc biệt quan trọng cho các ứng dụng yêu cầu độ chính xác cao
như toán học, khoa học và suy luận phức tạp. Phương pháp này có thể được áp dụng rộng rãi
trong các hệ thống AI thực tế để cải thiện độ tin cậy và hiệu suất. Việc phát hành dataset
và source code sẽ thúc đẩy nghiên cứu tiếp theo trong lĩnh vực này.

⚠️ Hạn Chế và Hướng Phát Triển

Mặc dù có những kết quả tích cực, nghiên cứu này vẫn có một số hạn chế. Việc tối ưu hóa MILP có thể
trở nên khó khăn với số lượng LLMs rất lớn. Ngoài ra, phương pháp adaptive sampling dựa trên Bayes Factor
có thể cần điều chỉnh cho các loại nhiệm vụ khác nhau. Hướng phát triển tương lai bao gồm việc mở rộng
phương pháp cho các nhiệm vụ multimodal và khám phá các cách tiếp cận hiệu quả hơn cho việc tối ưu hóa ensemble.

🔧 Chi Tiết Kỹ Thuật

📈 Datasets Sử Dụng

  • AIME2024: American Invitational Mathematics Examination – 15 bài toán toán học khó
  • AIME2025: Phiên bản mới của AIME với độ khó tương tự
  • GPQA-DIAMOND: Graduate-level Physics Questions – 448 câu hỏi vật lý trình độ sau đại học
  • MATH500: Mathematical reasoning problems – 500 bài toán toán học từ MATH dataset

🤖 LLMs Được Test

  • GPT-OSS-20B (OpenAI) – 20B parameters
  • Phi-4-reasoning (Microsoft) – 14B parameters
  • Qwen3-30B-A3B-Thinking – 30B parameters
  • Nemotron-Nano-9B-v2 (NVIDIA) – 9B parameters
  • EXAONE-Deep-32B – 32B parameters
  • MetaStone-S1-32B – 32B parameters
  • Và 5 mô hình khác

💻 Source Code và Dataset

Source code của nghiên cứu này có sẵn tại:
https://github.com/jkomiyama/BoInf-code-publish

Dataset với hơn 3,500 thế hệ cho mỗi kết hợp LLM–dataset sẽ được phát hành để thúc đẩy nghiên cứu tiếp theo
trong lĩnh vực test-time computation và LLM ensemble.

⚙️ Hyperparameters và Cài Đặt

  • Concentration parameter α: 0.3 cho tất cả thí nghiệm
  • Bayes factor threshold B: Được điều chỉnh cho từng dataset
  • Maximum samples N_max: 100 cho adaptive sampling
  • Monte Carlo samples: 1,000 cho tính toán Bayes factor
  • Independent runs: 100 cho mỗi thí nghiệm

 

📋 Thông Tin Nghiên Cứu

🔬 Nghiên Cứu Gốc

Tiêu đề: Best-of-∞ – Asymptotic Performance of Test-Time Compute

Tác giả: Junpei Komiyama, Daisuke Oba, Masafumi Oyamada

Ngày xuất bản: 26 Sep 2025

Nguồn: arXiv:2509.21091

🎯 Đóng Góp Chính

  • Phân tích hiệu suất tiệm cận của Best-of-N
  • Đề xuất phương pháp Adaptive Generation
  • Tối ưu hóa Weighted Ensemble với MILP
  • Thí nghiệm với 11 LLMs và 4 datasets

💻 Source Code & Dataset

GitHub: BoInf-code-publish

Dataset: Hơn 3,500 thế hệ cho mỗi kết hợp LLM–dataset

📊 Quy Mô Nghiên Cứu

LLMs: 11 mô hình mã nguồn mở

Datasets: 4 benchmark suy luận

Generations: ≥80 lần sinh cho mỗi kết hợp

Blog được tạo từ nghiên cứu gốc với mục đích giáo dục và chia sẻ kiến thức về AI và Machine Learning.

Tất cả hình ảnh và dữ liệu được trích xuất từ bài báo nghiên cứu gốc.
Đây là một trong những nghiên cứu quy mô lớn nhất về test-time computation trong LLMs.

 

AgentKit vs Dify: A Comprehensive Analysis for AI Agent Development

I. Introduction

In the rapidly evolving landscape of AI agent development, two prominent platforms have emerged as key players: AgentKit by OpenAI and Dify as an open-source alternative. This comprehensive analysis explores their capabilities, differences, and use cases to help developers and businesses make informed decisions.

II. What is AgentKit?

AgentKit is OpenAI’s comprehensive toolkit for building AI agents, designed to provide developers with the tools and infrastructure needed to create sophisticated AI-powered applications. It represents OpenAI’s vision for the future of AI agent development, offering both foundational components and advanced capabilities.

Core Components

  • Agent Builder: Visual interface for creating and configuring AI agents
  • ChatKit: Pre-built chat interfaces and conversation management
  • Connector Registry: Library of pre-built integrations with popular services
  • Evals: Comprehensive evaluation framework for testing agent performance
  • Guardrails: Safety and compliance tools for production deployments

III. What is Dify?

Dify is an open-source platform that enables users to build AI applications without extensive coding knowledge. It focuses on providing a visual, user-friendly interface for creating AI-powered workflows and applications.

Key Features

  • Visual Workflow Builder: Drag-and-drop interface for creating AI workflows
  • Multi-Model Support: Integration with various AI models and providers
  • Template Library: Pre-built templates for common use cases
  • API Management: RESTful APIs for integration

IV. Detailed Comparison: AgentKit vs Dify

Feature AgentKit Dify
Target Audience Developers & Enterprises Non-technical users & Startups
Learning Curve Steep (requires coding knowledge) Gentle (visual interface)
Customization Level High (full code control) Medium (template-based)
Integration Depth Deep API integration Surface-level integration
Scalability Enterprise-grade Small to medium projects
Cost Model Usage-based pricing Open-source + hosting costs
Support Enterprise support Community-driven
Deployment Cloud-first Self-hosted or cloud
Security Built-in enterprise security Basic security features
Performance Optimized for production Suitable for prototyping

Table 1: Feature Comparison Overview

V. Technical Implementation Comparison

Architecture and Deployment

Aspect AgentKit Dify
Architecture Microservices, cloud-native Monolithic, containerized
Deployment OpenAI cloud platform Self-hosted or cloud
Scaling Auto-scaling, enterprise-grade Manual scaling, limited
Monitoring Advanced analytics and logging Basic monitoring
Backup Automated, enterprise backup Manual backup solutions

Table 2: Architecture and Deployment Comparison

Security and Compliance

Security Feature AgentKit Dify
Authentication Enterprise SSO, MFA Basic auth, OAuth
Data Encryption End-to-end encryption Basic encryption
Compliance SOC 2, GDPR, HIPAA Basic compliance
Audit Logging Comprehensive audit trails Limited logging
Access Control Role-based, fine-grained Basic permission system

Table 3: Security and Compliance Comparison

Performance and Optimization

Metric AgentKit Dify
Response Time < 100ms (optimized) 200-500ms (standard)
Throughput 10,000+ requests/second 1,000 requests/second
Concurrent Users Unlimited (auto-scaling) Limited by infrastructure
Uptime 99.9% SLA Depends on hosting
Caching Advanced caching strategies Basic caching

Table 4: Performance and Optimization Comparison

VI. Cost and ROI Analysis

AgentKit Cost Analysis

Initial Costs

  • Setup and configuration: $5,000 – $15,000 USD
  • Team training: $10,000 – $25,000 USD
  • Integration development: $20,000 – $50,000 USD

Monthly Operating Costs

  • API usage: $0.01 – $0.10 USD per request
  • Enterprise support: $2,000 – $10,000 USD/month
  • Infrastructure: $1,000 – $5,000 USD/month

ROI Timeline: 6-12 months for enterprise projects

Dify Cost Analysis

Initial Costs

  • Setup: $0 USD (open source)
  • Basic configuration: $500 – $2,000 USD
  • Custom development: $2,000 – $10,000 USD

Monthly Operating Costs

  • Hosting: $100 – $1,000 USD/month
  • Maintenance: $500 – $2,000 USD/month
  • Support: Community-based (free)

ROI Timeline: 1-3 months for small projects

VII. Getting Started (Terminal Walkthrough)

The following screenshots demonstrate the complete setup process from scratch, showing each terminal command and its output for easy replication.

Step 1 — Clone the repository

Shows the git clone command downloading the AgentKit sample repository from GitHub with progress indicators and completion status.

Step 2 — Install dependencies

Displays the npm install process installing required packages (openai, express, cors, dotenv) with dependency resolution and warnings about Node.js version compatibility.

Step 3 — Configure environment (.env)

Demonstrates creating the .env file with environment variables including OPENAI_API_KEY placeholder and PORT configuration.

Step 4 — Run the server

Shows the server startup process with success messages indicating the AgentKit sample server is running on localhost:3000 with available agents and tools.

Step 5 — Verify health endpoint

Displays the API health check response using PowerShell’s Invoke-WebRequest command, showing successful connection and server status.

Step 6 — Verify port (optional)

Shows netstat command output confirming port 3000 is listening and ready to accept connections.

VIII. Demo Application Features

The following screenshots showcase the key features of our AgentKit sample application, demonstrating its capabilities and user interface.

Main Interface

Shows the main application interface with agent selection dropdown, tools toggle, chat messages area, and input section with modern gradient design.

Agent Switching

Demonstrates switching between different agent types (General, Coding, Creative) with dynamic response styles and specialized capabilities.

Tool Integration

Shows the calculator tool in action, displaying mathematical calculations with formatted results and tool usage indicators.

Conversation Memory

Illustrates conversation history and context awareness, showing how the agent remembers previous interactions and maintains coherent dialogue.

Mobile Responsive

Displays the mobile-optimized interface with responsive design, touch-friendly controls, and adaptive layout for smaller screens.

Error Handling

Shows graceful error handling with user-friendly error messages, retry options, and fallback responses for failed requests.

IX. Conclusion

Key Takeaways

  • AgentKit is ideal for enterprise applications requiring high performance, security, and scalability
  • Dify is perfect for rapid prototyping, small projects, and teams with limited technical expertise
  • Both platforms have their place in the AI development ecosystem
  • Choose based on your specific requirements, team capabilities, and budget constraints

The choice between AgentKit and Dify ultimately depends on your specific needs, team capabilities, and project requirements. AgentKit offers enterprise-grade capabilities for complex, scalable applications, while Dify provides an accessible platform for rapid development and prototyping.

As the AI agent development landscape continues to evolve, both platforms will likely see significant improvements and new features. Staying informed about their capabilities and roadmaps will help you make the best decision for your projects.

This analysis provides a comprehensive overview to help you choose the right platform for your AI agent development needs. Consider your specific requirements, team capabilities, and long-term goals when making your decision.

 

Quick Guide to Using Jules

Jules is Google’s asynchronous AI coding agent that integrates directly with your GitHub repositories to perform tasks like fixing bugs, writing tests, building new features, and bumping dependency versions.

Getting Started:

  1. Connect GitHub: Visit jules.google, select your repository and branch

  2. Assign Tasks: Write a detailed prompt for Jules, or add the “jules” label to a GitHub issue

  3. Jules Works: Jules fetches your repository, clones it to a Cloud VM, and develops a plan using the latest Gemini 2.5 Pro model Jules – An Asynchronous Coding Agent

  4. Review & Approve: Jules provides a diff of the changes for you to browse and approve
  5. Create PR: Once approved, Jules creates a pull request for you to merge and publish on GitHub

Anthropic giới thiệu mô hình lập trình đỉnh nhất thế giới Claude Sonnet 4.5

Trong thế giới AI đang thay đổi từng ngày, các mô hình ngôn ngữ lớn (LLM — Large Language Models) không chỉ dừng lại ở khả năng hiểu – sinh văn bản, mà đang tiến sang khả năng tương tác thực tế, thực thi công cụ, duy trì trạng thái lâu, và hỗ trợ tác vụ đa bước. Claude của Anthropic là một trong những cái tên nổi bật nhất trong cuộc đua này — và phiên bản mới nhất Sonnet 4.5 được định vị như một bước nhảy quan trọng.

“Claude Sonnet 4.5 is the best coding model in the world. It’s the strongest model for building complex agents. It’s the best model at using computers.”Anthropic

1. Giới thiệu

Trong vài năm gần đây, các mô hình như GPT (OpenAI), Gemini (Google / DeepMind), Claude (Anthropic) đã trở thành xương sống của nhiều ứng dụng AI trong sản xuất, công việc hàng ngày và nghiên cứu. Nhưng mỗi dòng mô hình đều chọn hướng “cân bằng” giữa sức mạnh và an toàn, giữa khả năng sáng tạo và kiểm soát.

Claude, từ khi xuất hiện, đã xác định con đường của mình: ưu tiên an toàn, khả năng tương tác công cụ (tool use), kiểm soát nội dung xấu. Đặc biệt, dòng Sonnet của Claude được dùng như phiên bản “cân bằng” giữa các mô hình nhẹ hơn và các mô hình cực mạnh (Opus).

Vào ngày 29 tháng 9 năm 2025, Anthropic chính thức ra mắt Claude Sonnet 4.5, phiên bản được quảng bá là mạnh nhất trong dòng Sonnet, và là mô hình kết hợp tốt nhất giữa cấu trúc mã, khả năng dùng máy tính và agent phức tạp.

Thông báo chính thức khẳng định Sonnet 4.5 không chỉ là nâng cấp nhỏ mà là bước tiến lớn: nó cải thiện đáng kể khả năng lập trình, tương tác công cụ, reasoning & toán học, đồng thời giữ chi phí sử dụng không đổi với Sonnet 4 trước đó.

2. Những điểm nổi bật & cải tiến từ thông báo chính thức

2.1 “Most aligned frontier model” — Mô hình tiên phong có alignment cao nhất

Anthropic mô tả Sonnet 4.5 là mô hình hiện đại có alignment tốt nhất mà họ từng phát hành. Họ cho biết rằng so với các phiên bản Claude trước đây, Sonnet 4.5 đã giảm đáng kể các hành vi không mong muốn như:

  • Sycophancy (lấy lòng người dùng quá mức)
  • Deception (lừa dối hoặc đưa thông tin sai)
  • Power-seeking (tự nâng quyền lực)
  • Khuyến khích ảo tưởng hoặc suy nghĩ sai lệch (encouraging delusional thinking)

Ngoài ra, để đối phó với rủi ro khi mô hình tương tác với công cụ (agent, prompt injection), họ đã có những bước tiến cải thiện trong bảo vệ chống prompt injection — một trong những lỗ hổng nghiêm trọng nhất khi dùng mô hình kết hợp công cụ.

Sonnet 4.5 được phát hành dưới AI Safety Level 3 (ASL-3), theo khung bảo vệ của Anthropic, với các bộ lọc (classifiers) để phát hiện các input/output có nguy cơ cao — đặc biệt liên quan đến vũ khí hóa học, sinh học, hạt nhân (CBRN).

Họ cũng nói rõ: các bộ lọc đôi khi sẽ “cảnh báo nhầm” (false positives), nhưng Anthropic đã cải thiện để giảm tỷ lệ báo nhầm so với trước — kể từ phiên bản Opus 4, tỷ lệ nhầm được giảm mạnh.

Việc đưa thông tin này vào blog (với giải thích dễ hiểu) sẽ giúp độc giả thấy rằng Sonnet 4.5 không đơn thuần là “thêm mạnh hơn”, mà cũng là “thêm an toàn”.

2.2 Nâng cấp công cụ & trải nghiệm người dùng

Một loạt tính năng mới và cải tiến trải nghiệm được Anthropic công bố:

  • Checkpoints trong Claude Code: Bạn có thể lưu tiến độ và “quay lui” về trạng thái trước đó nếu kết quả không như ý.
  • Giao diện terminal mới & extension VS Code gốc: để người dùng phát triển dễ dùng hơn trong môi trường quen thuộc.
  • Context editing (chỉnh ngữ cảnh) & memory tool trong API: giúp agent chạy dài hơi, duy trì bối cảnh xuất hiện trong prompt, xử lý phức tạp hơn.
  • Trong ứng dụng Claude (trên web/app), tích hợp thực thi mã (code execution)tạo file (spreadsheet, slide, document) ngay trong cuộc hội thoại.
  • Claude for Chrome extension (cho người dùng Max) — giúp Claude tương tác trực tiếp qua trình duyệt, lấp đầy form, điều hướng web, v.v.
  • Claude Agent SDK: Anthropic mở nền tảng cho các nhà phát triển xây dựng agent dựa trên cơ sở mà Claude dùng. SDK này chứa các thành phần họ đã phát triển cho Claude Code: quản lý memory, quyền kiểm soát, phối hợp sub-agent, v.v.
  • Research preview “Imagine with Claude”: một chế độ thử nghiệm cho phép Claude tạo phần mềm “on the fly”, không dùng mã viết sẵn, phản ứng tương tác theo yêu cầu của người dùng — được mở cho người dùng Max trong 5 ngày.

Những điểm này là “chất” để bạn thêm vào blog khiến nó hấp dẫn và mang tính cập nhật kỹ thuật cao.

2.3 Hiệu năng & benchmark đáng chú ý

Anthropic cung cấp các con số benchmark để thể hiện bước nhảy lớn của Sonnet 4.5:

  • Trên SWE-bench Verified (benchmark chuyên về khả năng lập trình thực tế), Sonnet 4.5 được cho là state-of-the-art.
  • Họ dùng phép thử: 77,2 %, tính trung bình 10 lần thử nghiệm, không dùng thêm compute khi test, và budget “thinking” 200K tokens.
  • Với cấu hình 1M context, có thể đạt 82,0 %.
  • Trên OSWorld (benchmark thử AI sử dụng máy tính thực: tương tác máy tính, trang web, file, lệnh), Sonnet 4.5 đạt 61,4 %, vượt Sonnet 4 trước đó (42,2 %).
  • Trong các lĩnh vực chuyên môn như tài chính, y tế, luật, STEM, Sonnet 4.5 thể hiện kiến thức và reasoning tốt hơn so với các mô hình cũ (bao gồm Opus 4.1).
  • Anthropic cũng nói rằng người dùng đã thấy mô hình giữ “focus” trong hơn 30 giờ khi thực hiện tác vụ phức tạp đa bước.

Khi bạn đưa vào blog, bạn nên giải thích những con số này (ví dụ: SWE-bench là gì, OSWorld là gì), để độc giả không chuyên cũng hiểu giá trị của việc tăng từ 42 % lên 61 %, hay “giữ 30 giờ” là gì trong bối cảnh AI.

2.5 Ưu điểm về chi phí & khả năng chuyển đổi

Một điểm rất hấp dẫn mà Anthropic nhấn mạnh: giá sử dụng Sonnet 4.5 giữ nguyên như Sonnet 4 — không tăng phí, vẫn là $3 / $15 per million tokens (theo gói)

Họ cũng nhấn rằng Sonnet 4.5 là bản “drop-in replacement” cho Sonnet 4 — tức là nếu bạn đang dùng Sonnet 4 qua API hay ứng dụng Claude, bạn có thể chuyển sang Sonnet 4.5 mà không cần thay đổi nhiều.

Điều này làm tăng sức hấp dẫn của việc nâng cấp từ các phiên bản cũ lên Sonnet 4.5 — vì bạn được lợi nhiều hơn mà không phải trả thêm.

2.6 Thông tin kỹ thuật & lưu ý từ hệ thống (system card)

Trong thông báo, Anthropic cũng nhắc đến system card đi kèm Sonnet 4.5 — nơi họ công bố chi tiết hơn về các đánh giá an toàn, mitigations, phương pháp thử nghiệm, các chỉ số misaligned behaviors, cách họ đo lường prompt injection, v.v.

Ví dụ, trong system card có:

  • Biểu đồ “misaligned behavior scores” (hành vi lệch chuẩn) — càng thấp càng tốt — được đo qua hệ thống auditor tự động.
  • Phương pháp thử nghiệm và footnotes cho các benchmark: cách họ test SWE-bench, OSWorld, Terminal-Bench, τ2-bench, AIME, MMMLU, Finance Agent.
  • Ghi chú rằng các khách hàng trong ngành an ninh mạng, nghiên cứu sinh học, v.v. có thể được vào allowlist nếu cần vượt hạn chế CBRN.

3. Những cải tiến chính trong phiên bản 4.5

3.1 Hiệu năng lập trình & agent

Một trong những điểm mạnh lớn mà Sonnet 4.5 hướng tới là năng lực lập trình thực tế. Trên benchmark SWE-bench Verified, nó đạt ~ 77,2 % (khi test với scaffold, không dùng thêm compute), và ở cấu hình 1M context có thể lên đến ~ 82,0 %. Trong các thử nghiệm nội bộ, nó có thể giữ trạng thái làm việc liên tục hơn 30 giờ cho các tác vụ phức tạp.

Khi so sánh với Sonnet 4 trước đó, Sonnet 4.5 đạt 61,4 % trên benchmark OSWorld (AI thực thi máy tính thực tế), trong khi Sonnet 4 chỉ có ~ 42,2 %. Đây là bước nhảy lớn trong khả năng AI “dùng máy tính như người dùng thật”.

Ngoài ra, Sonnet 4.5 được thiết kế để thực thi nhiều lệnh song song (“parallel tool execution”) — ví dụ chạy nhiều lệnh bash trong một ngữ cảnh — giúp tận dụng tối đa “actions per context window” (số hành động trên khung ngữ cảnh) hiệu quả hơn.

3.4 Trải nghiệm người dùng & công cụ hỗ trợ

Sonnet 4.5 không chỉ mạnh mà còn dễ dùng:

  • Checkpoints trong Claude Code: cho phép người dùng lưu trạng thái, quay trở lại nếu cần.
  • Giao diện terminal mới, extension VS Code tích hợp gốc — giúp developer làm việc trong môi trường quen thuộc.
  • Context editing (chỉnh ngữ cảnh) và memory tool trong API: giúp agent theo dõi ngữ cảnh, nhớ các bước trước và hoạt động trong tác vụ dài hơn.
  • Trong ứng dụng Claude (app/web): hỗ trợ thực thi mãtạo file (spreadsheet, slide, document) ngay trong cuộc hội thoại — không cần chuyển sang công cụ ngoài.
  • Claude for Chrome: tiện ích mở rộng cho người dùng Max — giúp Claude tương tác trực tiếp với trang web: điều hướng, điền form, xử lý các tương tác web.
  • Claude Agent SDK: Anthropic mở mã để người dùng / developer xây agent dựa trên nền tảng mà Claude sử dụng — từ memory management đến phối hợp sub-agent, quyền kiểm soát, v.v.
  • Imagine with Claude: bản thử nghiệm (research preview) cho phép Claude “sáng tạo phần mềm on the fly” — nghĩa là không có phần mã viết sẵn, mà mô hình tự sinh & điều chỉnh theo yêu cầu người dùng. Được cung cấp cho người dùng Max trong 5 ngày.
3.3 An toàn và alignment

Sonnet 4.5 không chỉ mạnh mà còn chú trọng an toàn:

  • Áp dụng các bộ lọc (classifiers) để phát hiện các input/output nguy hiểm, đặc biệt trong các lĩnh vực CBRN — nhằm hạn chế khả năng sử dụng mô hình cho vũ khí hóa học, sinh học, hạt nhân.
  • Các bộ lọc này đôi khi “cảnh báo nhầm” (false positives), nhưng Anthropic đã cải tiến để giảm tỷ lệ này: so với trước, giảm 10× từ bản gốc, và giảm 2× so với Opus 4.
  • Việc phát hành ở mức AI Safety Level 3 (ASL-3) cho thấy Anthropic đặt giới hạn truy cập và bảo vệ bổ sung theo khả năng mô hình.
  • Biểu đồ “misaligned behavior scores” (điểm hành vi lệch chuẩn) được công bố — thể hiện mức độ giảm các hành vi như deception, sycophancy, power-seeking, khuyến khích ảo tưởng.
  • Bảo vệ chống prompt injection được cải thiện đáng kể, đặc biệt quan trọng khi mô hình dùng công cụ/agent.

Những yếu tố này rất quan trọng để người dùng tin tưởng dùng Sonnet 4.5 trong môi trường sản xuất, doanh nghiệp, ứng dụng thực tế.

3.4 Chi phí & chuyển đổi dễ dàng

Một điểm hấp dẫn là giá vẫn giữ như Sonnet 4: không tăng phí, vẫn là $3/$15 per million tokens (tùy gói)

Anthropic cho biết Sonnet 4.5 là drop-in replacement — tức nếu bạn đang dùng Sonnet 4 qua API hoặc ứng dụng, bạn có thể chuyển sang Sonnet 4.5 mà không cần thay đổi nhiều code hoặc cấu hình.

Đây là chi tiết quan trọng để độc giả của blog thấy rằng “nâng cấp” không đồng nghĩa “tăng chi phí lớn”.

4. Ứng dụng thực tiễn & tiềm năng nổi bật

Với những cải tiến kể trên, Claude Sonnet 4.5 có thể được ứng dụng mạnh trong nhiều lĩnh vực — phần này bạn có thể minh họa thêm bằng ví dụ thực tế trong blog của bạn.

4.1 Lập trình & phát triển phần mềm

  • Tạo mã (code generation) từ module nhỏ đến hệ thống lớn
  • Tự động sửa lỗi, refactor code, test, deploy
  • Phối hợp agent để quản lý dự án lập trình — chia nhỏ tác vụ, kiểm soát tiến độ
  • Hỗ trợ developer trong IDE (nhờ extension VS Code)

Ví dụ từ Anthropic: Sonnet 4.5 có thể hiểu mẫu mã code của một codebase lớn, thực hiện debug và kiến trúc theo ngữ cảnh cụ thể của dự án.

4.2 Ứng dụng doanh nghiệp & phân tích

  • Tự động hóa quy trình nội bộ: trích xuất, tổng hợp báo cáo, phân tích dữ liệu
  • Hỗ trợ phân tích tài chính, mô hình rủi ro, dự báo
  • Trong lĩnh vực pháp lý: phân tích hồ sơ kiện tụng, tổng hợp bản ghi, soạn bản nháp luật, hỗ trợ CoCounsel (như trích dẫn trong bài)
  • Trong an ninh mạng: red teaming, phát hiện lỗ hổng, tạo kịch bản tấn công (Anthropic trích dẫn việc Sonnet 4.5 được dùng cho các công ty an ninh mạng để giảm “vulnerability intake time” 44 % và tăng độ chính xác 25 %)

4.3 Trợ lý ảo – công việc văn phòng

  • Trong ứng dụng Claude: tạo slide, bảng tính, file văn bản trực tiếp từ cuộc hội thoại
  • Hỗ trợ xử lý email, lập kế hoạch, tổng hợp nội dung, viết báo cáo
  • Tương tác với nhiều hệ thống qua API, làm các tác vụ đa bước

4.4 Agent thông minh & tác vụ liên tục

Nhờ khả năng duy trì ngữ cảnh, nhớ lâu và tương tác công cụ, Sonnet 4.5 rất phù hợp để xây agent đa bước, làm việc liên tục qua nhiều giờ:

  • Quản lý dự án (lập kế hoạch → giám sát → báo cáo)
  • Agent giám sát, tự động hóa pipeline (CI/CD, triển khai sản phẩm)
  • Agent tương tác đa hệ thống (hệ thống CRM, ERP, API bên ngoài)
  • Agent tự điều chỉnh dựa trên phản hồi mới

Anthropic nhắc rằng Sonnet 4.5 có thể “giữ 30+ giờ tự chủ trong mã” — tức là trong tác vụ lập trình liên tục, mô hình vẫn giữ mạch lạc và không “rơi rụng”.

5. So sánh Sonnet 4.5 với các mô hình khác & ưu nhược điểm

Phần này giúp độc giả định vị Sonnet 4.5 trong “bản đồ AI” hiện tại.

5.1 So với Claude phiên bản trước (Sonnet 4, Opus 4)

Ưu điểm của 4.5 so với Sonnet 4 / Opus 4:

  • Nâng cao khả năng sử dụng công cụ & tương tác thực tế (OSWorld từ ~42,2 % lên ~61,4 %)
  • Tăng độ ổn định / duy trì trạng thái lâu hơn (“30+ giờ”)
  • Checkpoints, context editing, memory tool — các tính năng mà Sonnet 4 không có
  • Giá giữ nguyên so với Sonnet 4
  • Kích hoạt SDK agent, mở đường cho người dùng xây agent tùy biến
  • Cải thiện an toàn và alignment

Hạn chế so với Opus / mô hình cao cấp:

  • Có thể Opus 4 vẫn có lợi thế trong một số bài toán reasoning cực lớn
  • Sonnet 4.5 là phiên bản “cân bằng” — nếu bạn cần năng lực cực hạn, Opus có thể vẫn vượt trội
  • Dù giảm lỗi, Sonnet 4.5 vẫn có thể có sai sót trong môi trường thực, đặc biệt trong các domain ngoài dữ liệu huấn luyện

5.2 So với GPT-4 / GPT-5 / Gemini / các LLM khác

Lợi thế của Sonnet 4.5:

  • Khả năng dùng máy tính & thực thi công cụ nội tại — điểm mà GPT truyền thống cần mô hình kết hợp môi trường để làm
  • Agent lâu dài, giữ trạng thái dài, xử lý tác vụ đa bước
  • Tích hợp tính năng code execution, file creation ngay trong mô hình
  • Chi phí “không tăng khi nâng cấp” — tạo động lực để chuyển
  • An toàn & alignment là một trong các ưu tiên thiết kế

Thách thức so với GPT / Gemini:

  • Ecosystem plugin / cộng đồng hỗ trợ GPT / Gemini lớn hơn — nhiều tài nguyên, thư viện, ứng dụng kèm
  • GPT / Gemini có thể mạnh hơn về “ngôn ngữ tự nhiên / creative writing” trong nhiều tình huống
  • Tốc độ inference, độ trễ, khả năng mở rộng thực tế có thể là điểm yếu nếu triển khai không tốt

5.3 Ưu điểm & hạn chế tổng quan

Ưu điểm:

  • Kết hợp tốt giữa sức mạnh và khả năng dùng trong thực tế
  • Được cải tiến nhiều tính năng hữu ích (checkpoints, memory, chỉnh ngữ cảnh)
  • An toàn hơn — giảm nhiều loại hành vi không mong muốn
  • Giá ổn định, chuyển đổi dễ
  • Được phản hồi tích cực từ người dùng thật sự

Hạn chế & rủi ro:

  • Không hoàn hảo — vẫn có thể “bịa”, sai logic, đặc biệt trong domain mới
  • Khi agent liên tục tự hành động, nếu prompt hoặc giám sát không chặt có thể gây lỗi nghiêm trọng
  • Việc triển khai thực tế (cơ sở hạ tầng, độ ổn định, tài nguyên) là thách thức lớn
  • Mô hình mới nhanh chóng — Sonnet 4.5 có thể bị vượt nếu Anthropic hoặc đối thủ không tiếp tục đổi mới

6. Kết luận & lời khuyên cho người dùng

Claude Sonnet 4.5 là một bước tiến ấn tượng trong dòng Claude: nó mang lại năng lực cao hơn trong lập trình, tương tác công cụ, agent lâu dài và các ứng dụng thực tế. Nếu được sử dụng đúng cách, nó có thể là trợ thủ đắc lực cho lập trình viên, nhà phân tích, đội phát triển sản phẩm, và nhiều lĩnh vực khác.

Tuy nhiên, không có mô hình AI nào hoàn hảo. Người dùng cần hiểu đúng điểm mạnh, điểm yếu, luôn giám sát kết quả, thiết lập kiểm soát và luôn cập nhật khi có phiên bản mới.

Nếu bạn là nhà phát triển, nhà phân tích hay người chủ doanh nghiệp, Claude Sonnet 4.5 có thể là lựa chọn đáng cân nhắc cho các nhiệm vụ có tính logic cao, cần tương tác công cụ, hoặc muốn xây agent thông minh.

GPT-5-Codex Prompting Guide: Hướng Dẫn Tối Ưu Hóa Prompt Cho Lập Trình

Giới Thiệu

GPT-5-Codex là phiên bản nâng cao của GPT-5, được OpenAI tối ưu hóa đặc biệt cho các nhiệm vụ lập trình tương tác và tự động. Mô hình này được huấn luyện với trọng tâm vào công việc kỹ thuật phần mềm thực tế, mang lại hiệu suất vượt trội trong cả các phiên làm việc nhanh chóng và các nhiệm vụ phức tạp kéo dài.

⚠️ Lưu Ý Quan Trọng

  • Không phải thay thế trực tiếp: GPT-5-Codex không phải là thay thế trực tiếp cho GPT-5, vì nó yêu cầu cách prompting khác biệt đáng kể
  • Chỉ hỗ trợ Responses API: Mô hình này chỉ được hỗ trợ với Responses API và không hỗ trợ tham số verbosity
  • Dành cho người dùng API: Hướng dẫn này dành cho người dùng API của GPT-5-Codex và tạo developer prompts, không dành cho người dùng Codex

Những Cải Tiến Chính Của GPT-5-Codex

1. Khả Năng Điều Hướng Cao

GPT-5-Codex cung cấp mã chất lượng cao cho các nhiệm vụ kỹ thuật phức tạp như:

  • Phát triển tính năng mới
  • Kiểm thử và gỡ lỗi
  • Tái cấu trúc mã nguồn
  • Đánh giá và review code

Tất cả những nhiệm vụ này được thực hiện mà không cần hướng dẫn dài dòng hay chi tiết.

2. Mức Độ Suy Luận Thích Ứng

Mô hình có khả năng điều chỉnh thời gian suy luận theo độ phức tạp của nhiệm vụ:

  • Phản hồi nhanh trong các phiên tương tác ngắn
  • Có thể làm việc độc lập trong nhiều giờ cho các nhiệm vụ phức tạp
  • Tự động phân bổ tài nguyên tính toán phù hợp

3. Xuất Sắc Trong Đánh Giá Mã

GPT-5-Codex được huấn luyện đặc biệt để:

  • Thực hiện đánh giá mã chuyên sâu
  • Điều hướng trong các cơ sở mã lớn
  • Chạy mã và kiểm thử để xác nhận tính đúng đắn
  • Phát hiện lỗi và đề xuất cải tiến

Môi Trường Hỗ Trợ

GPT-5-Codex được thiết kế đặc biệt cho:

  • Codex CLI: Giao diện dòng lệnh cho lập trình
  • Phần mở rộng Codex IDE: Phần mở rộng cho các IDE phổ biến
  • Môi trường đám mây Codex: Môi trường đám mây chuyên dụng
  • Tích hợp GitHub: Tích hợp sâu với GitHub
  • Đa dạng công cụ: Hỗ trợ nhiều loại công cụ lập trình

Nguyên Tắc Cốt Lõi: “Ít Hơn Là Tốt Hơn”

Đây là nguyên tắc quan trọng nhất khi tạo prompt cho GPT-5-Codex. Do mô hình được huấn luyện đặc biệt cho lập trình, nhiều thực hành tốt đã được tích hợp sẵn, và việc quá tải hướng dẫn có thể làm giảm chất lượng.

1. Bắt Đầu Với Prompt Tối Giản

  • Sử dụng prompt ngắn gọn, lấy cảm hứng từ prompt hệ thống của Codex CLI
  • Chỉ thêm những hướng dẫn thực sự cần thiết
  • Tránh các mô tả dài dòng không cần thiết

2. Loại Bỏ Phần Mở Đầu

  • GPT-5-Codex không hỗ trợ phần mở đầu
  • Yêu cầu phần mở đầu sẽ khiến mô hình dừng sớm trước khi hoàn thành nhiệm vụ
  • Tập trung vào nhiệm vụ chính ngay từ đầu

3. Giảm Số Lượng Công Cụ

  • Chỉ sử dụng các công cụ cần thiết:
    • Terminal: Để thực thi lệnh
    • apply_patch: Để áp dụng thay đổi mã
  • Loại bỏ các công cụ không cần thiết

4. Mô Tả Công Cụ Ngắn Gọn

  • Làm cho mô tả công cụ ngắn gọn nhất có thể
  • Loại bỏ các chi tiết không cần thiết
  • Tập trung vào chức năng cốt lõi

So Sánh Với GPT-5

Prompt của GPT-5-Codex ngắn hơn khoảng 40% so với GPT-5, điều này nhấn mạnh rằng:

  • Prompt tối giản là lý tưởng cho mô hình này
  • Ít token hơn = hiệu suất tốt hơn
  • Tập trung vào chất lượng thay vì số lượng

Ví Dụ Thực Tế

Prompt Không Tối Ưu:

Bạn là một lập trình viên chuyên nghiệp với nhiều năm kinh nghiệm. Hãy bắt đầu bằng cách phân tích yêu cầu, sau đó tạo kế hoạch chi tiết, và cuối cùng implement code với nhiều comment giải thích. Đảm bảo code có error handling, unit tests, và documentation đầy đủ...

Prompt Tối Ưu:

Tạo một function để tính tổng hai số nguyên.

Ví Dụ Thực Tế: Gọi API GPT-5-Codex

Bước 1: Cài đặt và cấu hình

Lưu ý: Thay sk-your-api-key-here bằng API key thực tế của bạn từ OpenAI.

Bước 2: Tạo file Python gọi GPT-5-Codex

Mở Notepad và paste code sau:

import os
from openai import OpenAI
from dotenv import load_dotenv

# Load API key từ file .env
load_dotenv()

# Khởi tạo client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))

def call_gpt5_codex(prompt):
    """
    Gọi API GPT-5-Codex với prompt tối giản
    """
    try:
        response = client.chat.completions.create(
            model="gpt-5-codex",  # Model name cho GPT-5-Codex
            messages=[
                {
                    "role": "user", 
                    "content": prompt
                }
            ],
            temperature=0.1,  # Thấp để code chính xác
            max_tokens=4000
        )
        
        return response.choices[0].message.content
        
    except Exception as e:
        return f"Lỗi: {str(e)}"

# Ví dụ sử dụng
if __name__ == "__main__":
    # Prompt tối giản - không cần hướng dẫn dài dòng
    prompt = "Tạo function Python để tính fibonacci số thứ n"
    
    print("Đang gọi GPT-5-Codex...")
    result = call_gpt5_codex(prompt)
    print("\nKết quả từ GPT-5-Codex:")
    print("=" * 50)
    print(result)

Bước 3: Chạy demo

Bước 4: Ví dụ Request/Response thực tế

Request JSON:

{
  "model": "gpt-5-codex",
  "messages": [
    {
      "role": "user",
      "content": "Tạo REST API với FastAPI để quản lý users"
    }
  ],
  "temperature": 0.1,
  "max_tokens": 2000
}

Response từ GPT-5-Codex:

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List

app = FastAPI()

# In-memory storage (thay bằng database thực tế)
users = []

class User(BaseModel):
    id: int
    name: str
    email: str

class UserCreate(BaseModel):
    name: str
    email: str

@app.get("/users")
def get_users():
    return users

@app.post("/users")
def create_user(user: UserCreate):
    new_user = User(
        id=len(users) + 1,
        name=user.name,
        email=user.email
    )
    users.append(new_user)
    return new_user

@app.delete("/users/{user_id}")
def delete_user(user_id: int):
    global users
    users = [u for u in users if u.id != user_id]
    return {"message": "User deleted"}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)

Bước 5: So sánh Prompt hiệu quả

❌ Prompt không tối ưu:

Bạn là một lập trình viên chuyên nghiệp với 10 năm kinh nghiệm. Hãy tạo một REST API hoàn chỉnh với FastAPI để quản lý users. API phải có đầy đủ CRUD operations, validation, error handling, logging, và documentation. Đảm bảo code clean, có comment đầy đủ, và tuân thủ best practices...

✅ Prompt tối ưu cho GPT-5-Codex:

Tạo REST API với FastAPI để quản lý users

Kết quả: GPT-5-Codex tự động tạo ra code đầy đủ chức năng mà không cần hướng dẫn chi tiết.

Anti-Prompting: Những Điều Không Cần Thiết

Do GPT-5-Codex được huấn luyện đặc biệt cho lập trình agentic, việc điều chỉnh prompt thường có nghĩa là loại bỏ hướng dẫn thay vì thêm vào. Dưới đây là những khía cạnh bạn có thể không cần điều chỉnh:

1. Suy Luận Thích Ứng (Adaptive Reasoning)

Suy luận thích ứng giờ đây là mặc định trong GPT-5-Codex. Trước đây, bạn có thể đã prompt các mô hình để “suy nghĩ kỹ hơn” hoặc “phản hồi nhanh” dựa trên độ khó của nhiệm vụ. GPT-5-Codex tự động điều chỉnh:

  • Câu hỏi đơn giản: “Làm thế nào để undo commit cuối nhưng giữ lại các thay đổi staged?” → Phản hồi nhanh không cần điều chỉnh thêm
  • Nhiệm vụ phức tạp: Tự động dành thời gian cần thiết và sử dụng công cụ phù hợp

2. Lập Kế Hoạch (Planning)

GPT-5-Codex được huấn luyện cho nhiều loại nhiệm vụ lập trình từ các tác vụ tự động dài hạn đến các tác vụ lập trình tương tác ngắn hạn. Mô hình có tính cách hợp tác theo mặc định:

  • Khi bắt đầu một tác vụ tự động, mô hình sẽ xây dựng kế hoạch chi tiết
  • Cập nhật tiến độ trong quá trình thực hiện
  • Codex CLI bao gồm công cụ lập kế hoạch và mô hình được huấn luyện để sử dụng nó

3. Phần Mở Đầu (Preambles)

GPT-5-Codex KHÔNG tạo ra phần mở đầu! Việc prompt và yêu cầu phần mở đầu có thể dẫn đến việc mô hình dừng sớm. Thay vào đó, có một trình tóm tắt tùy chỉnh tạo ra các tóm tắt chi tiết chỉ khi phù hợp.

4. Giao Diện Người Dùng

GPT-5-Codex mặc định có thẩm mỹ mạnh mẽ và các thực hành giao diện người dùng hiện đại tốt nhất. Nếu bạn có thư viện hoặc framework ưa thích, hãy điều chỉnh mô hình bằng cách thêm các phần ngắn:

Hướng Dẫn Giao Diện Người Dùng
Sử dụng các thư viện sau trừ khi người dùng hoặc repo chỉ định khác:
Framework: React + TypeScript
Styling: Tailwind CSS
Components: shadcn/ui
Icons: lucide-react
Animation: Framer Motion
Charts: Recharts
Fonts: San Serif, Inter, Geist, Mona Sans, IBM Plex Sans, Manrope

Prompt Tham Chiếu: Codex CLI

Dưới đây là prompt đầy đủ của Codex CLI mà bạn có thể sử dụng làm tham chiếu khi tạo prompt cho GPT-5-Codex:

Các Điểm Chính Trong Prompt Codex CLI:

1. Cấu hình chung:

  • Các đối số của shell sẽ được truyền cho execvp()
  • Hầu hết các lệnh terminal nên được prefix với ["bash", "-lc"]
  • Luôn đặt tham số workdir khi sử dụng hàm shell
  • Ưu tiên sử dụng rg thay vì grep vì nhanh hơn

2. Ràng buộc chỉnh sửa:

  • Mặc định sử dụng ASCII khi chỉnh sửa hoặc tạo file
  • Thêm comment code ngắn gọn giải thích những gì đang diễn ra
  • Có thể ở trong git worktree bẩn – KHÔNG BAO GIỜ revert các thay đổi hiện có

3. Công cụ lập kế hoạch:

  • Bỏ qua công cụ planning cho các tác vụ đơn giản (khoảng 25% dễ nhất)
  • Không tạo kế hoạch một bước
  • Cập nhật kế hoạch sau khi hoàn thành một trong các subtask

4. Sandboxing và approvals:

  • Sandboxing hệ thống file: chỉ đọc, ghi workspace, truy cập đầy đủ nguy hiểm
  • Sandboxing mạng: hạn chế, bật
  • Chính sách phê duyệt: không tin tưởng, khi thất bại, theo yêu cầu, không bao giờ

5. Cấu trúc và phong cách:

  • Văn bản thuần túy; CLI xử lý định dạng
  • Tiêu đề: tùy chọn; Title Case ngắn (1-3 từ) trong
  • Dấu đầu dòng: sử dụng -; hợp nhất các điểm liên quan
  • Monospace: backticks cho lệnh/đường dẫn/biến môi trường/id code

Apply Patch

Như đã chia sẻ trước đó trong hướng dẫn GPT-5, đây là triển khai apply_patch cập nhật nhất mà chúng tôi khuyến nghị sử dụng cho việc chỉnh sửa file để khớp với phân phối huấn luyện.

Lợi Ích Của Việc Sử Dụng Đúng Cách

  1. Hiệu Suất Cao Hơn: Phản hồi nhanh và chính xác
  2. Tiết Kiệm Token: Giảm chi phí sử dụng (40% ít token hơn GPT-5)
  3. Kết Quả Tốt Hơn: Mô hình tập trung vào nhiệm vụ chính
  4. Dễ Bảo Trì: Prompt ngắn gọn dễ hiểu và chỉnh sửa
  5. Tự Động Hóa: Suy luận thích ứng và lập kế hoạch tự động
  6. Tích Hợp Sẵn: Nhiều best practices đã được tích hợp sẵn

Kết Luận

GPT-5-Codex đại diện cho một bước tiến lớn trong việc ứng dụng AI cho lập trình. Việc áp dụng đúng các nguyên tắc prompting sẽ giúp bạn tận dụng tối đa sức mạnh của mô hình này. Hãy nhớ rằng “ít hơn là tốt hơn” – đây không chỉ là nguyên tắc của GPT-5-Codex mà còn là triết lý trong việc tạo ra các hệ thống AI hiệu quả.

Benefits of Using MD vs XLSX for Knowledge Base on Dify

Why Use Markdown?

1. Better AI Processing

  • Semantic understanding: AI models process continuous text more effectively than fragmented cell data
  • Context preservation: Paragraph-based content maintains relationships between information
  • Effective retrieval: Vector embeddings capture meaning better from natural language text
  • Natural chunking: Content splits logically by sections, preserving context in each chunk

2. Cost Efficiency

  • Smaller storage: Plain text (5-10KB) vs Excel with formatting overhead (50-100KB+)
  • Lower token usage: Markdown structure is simpler, reducing embedding and processing tokens
  • Faster processing: Text parsing is significantly faster than Excel binary format

3. Operational Benefits

  • Version control friendly: Git tracks line-by-line changes effectively
  • Universal editing: Any text editor works, no proprietary software needed
  • Better collaboration: Merge conflicts are easier to resolve in plain text
  • Automation ready: Easily integrated into CI/CD and documentation workflows

4. When to Use Excel?

XLSX may be suitable when:

  • You need structured tabular data with calculations/formulas
  • Data is primarily numerical with specific formatting requirements
  • Direct import/export with database systems or business intelligence tools
  • Non-technical users need to edit data in familiar spreadsheet interface

However, for knowledge bases consumed by AI, converting to Markdown yields better results even for tabular data.

Demo: Converting XLSX to MD

You can create a custom plugin tool on Dify to convert Excel files to Markdown. Here’s how I built mine:

Implementation Steps

  1. Accept XLSX file input
    • Require Xlsx File parameter and wrap its blob in a BytesIO stream
  2. Configure column selection
    • Extract Selected Columns parameter (accepts list/JSON string/comma-separated string)
    • Ensure it is non-empty
  3. Set delimiter
    • Resolve Delimiter parameter for separating entries
  4. Parse Excel file
    • Read the first worksheet into a DataFrame using pandas
    • Verify all requested columns exist in the DataFrame header
    • Subset DataFrame to selected columns only
    • Normalize NaN values to None
  5. Transform to structured data
    • Convert each row into a dictionary keyed by selected column names
    • If no rows remain, emit message indicating no data and stop
  6. Generate Markdown
    • Build content by writing column: value lines per row
    • Append delimiter between entries
    • Join all blocks into final Markdown
  7. Output file
    • Derive filename from uploaded file metadata
    • Emit blob message with Markdown bytes and metadata

Sample

Input

 

Output

Spec Kit: A Smarter Way to Build Software with AI

Have you ever asked someone to help you with a project, only to get back something that looks right but isn’t quite what you wanted? That’s exactly what happens when we work with AI coding assistants today. We describe what we want, get code back, and often find ourselves saying “Well, it’s close, but…”

GitHub just released a free tool called Spec Kit that solves this problem by teaching us a better way to communicate with AI assistants. Think of it as a structured conversation method that helps both you and the AI stay on the same page.

The Problem: Why “Just Tell the AI What You Want” Doesn’t Work

Imagine you’re renovating your kitchen and you tell the contractor: “I want it to look modern and functional.” Without more details, they’ll make their best guess based on what they think “modern” and “functional” mean. The result might be beautiful, but probably won’t match your vision.

The same thing happens with AI coding assistants. When we give vague instructions like “build me a photo sharing app,” the AI has to guess at hundreds of details:

  • How should users organize their photos?
  • Can they share albums with friends?
  • Should it work on phones and computers?
  • How do they sign in?

Some guesses will be right, some won’t, and you often won’t discover the problems until much later in the process.

The Solution: Spec-Driven Development

Spec-Driven Development is like having a detailed conversation before starting any work. Instead of jumping straight into building, you:

  1. Clearly describe what you want (the “what” and “why”)
  2. Plan how to build it (the technical approach)
  3. Break it into small steps (manageable tasks)
  4. Build it step by step (focused implementation)

The magic happens because each step builds on the previous one, creating a clear roadmap that both you and the AI can follow.

How Spec Kit Makes This Easy

Spec Kit provides a simple toolkit with four phases that anyone can learn:

Phase 1: Specify – “What do you want to build?”

You describe your vision in plain language, focusing on:

  • Who will use it? (your target users)
  • What problem does it solve? (the main purpose)
  • How will people use it? (the user experience)
  • What does success look like? (your goals)

Example: Instead of “build a task manager,” you’d say:

“Build a team productivity app where project managers can assign tasks to engineers, team members can move tasks between ‘To Do,’ ‘In Progress,’ and ‘Done’ columns, and everyone can leave comments on tasks. It should be easy to see at a glance which tasks are yours versus others.”

Phase 2: Plan – “How should we build it?”

Now you get technical (but still in everyday terms):

  • What technology should we use? (website, mobile app, etc.)
  • What are the constraints? (budget, timeline, compatibility needs)
  • What are the rules? (security requirements, company standards)

Example:

“Build this as a simple web application that works in any browser. Store data locally on the user’s computer – no cloud storage needed. Keep it simple with minimal external dependencies.”

Phase 3: Tasks – “What are the specific steps?”

The AI breaks your big vision into small, manageable pieces:

  • Create user login system
  • Build the task board layout
  • Add drag-and-drop functionality
  • Implement commenting system

Each task is something that can be built and tested independently.

Phase 4: Implement – “Let’s build it!”

Your AI assistant tackles each task one by one, and you review focused changes instead of overwhelming code dumps.

Why This Approach Works Better

Traditional approach: “Build me a photo sharing app” → AI makes 1000 assumptions → You get something that’s 70% right

Spec-driven approach: Clear specification → Detailed plan → Small tasks → AI builds exactly what you described

The key insight is that AI assistants are incredibly good at following detailed instructions, but terrible at reading your mind. By being explicit upfront, you get much better results.

Getting Started with Spec Kit

Spec Kit works with popular AI coding assistants like:

  • GitHub Copilot
  • Claude Code
  • Gemini CLI

Installing and Using Spec Kit

1. Install Specify

uv tool install specify-cli –from git+https://github.com/github/spec-kit.git
specify init reading-assistant

2. Establish project principles

/constitution Create principles focused on code quality, testing standards, user experience consistency, and performance requirements

3. Create the spec

/specify
GOAL
– Input: URL (or pasted text)
– Process: Fetch article → summarize (150–250 words) → generate 3–5 practice questions
– Output: Markdown with Summary, Questions, Source
– Constraint: Minimal Python CLI

4. Create a technical implementation plan

/plan
ARCHITECTURE
– Python CLI with argparse
– Modules:
• fetcher.py: download HTML
• extractor.py: parse text with BeautifulSoup
• llm.py: call OpenAI (gpt-4o-mini)
• markdown.py: render Markdown
– Flow: URL/text → fetch & extract → LLM → Markdown → stdout

DEPENDENCIES
– requests, beautifulsoup4, python-dotenv

OUTPUT FORMAT
# Summary
<summary>

# Questions
1. …
2. …

# Source
<url or ‘pasted text’>

5. Break down into tasks

/tasks
– [ ] Setup project skeleton + requirements
– [ ] Implement fetcher (requests)
– [ ] Implement extractor (BeautifulSoup)
– [ ] Implement LLM client with prompt
– [ ] Implement Markdown renderer
– [ ] Wire CLI (argparse)
– [ ] Smoke test with one URL and one pasted file
– [ ] Add README with quick start

6. Execute implementation

/implement
FILES
1) requirements.txt
requests
beautifulsoup4
python-dotenv

2) app.py
– argparse: –url, –text
– orchestrate modules and print Markdown

3) fetcher.py
– fetch_url(url) with timeout, retry

4) extractor.py
– extract_text(html) → title + paragraphs

5) llm.py
– summarize_and_ask(text) → {“summary”: str, “questions”: [str]}
– uses OPENAI_API_KEY; friendly error if missing

6) markdown.py
– render(result, source) → Markdown string

7) README.md
– Quick start instructions
– Example commands

 

Result

 

References:

https://github.com/github/spec-kit

https://github.blog/ai-and-ml/generative-ai/spec-driven-development-with-ai-get-started-with-a-new-open-source-toolkit/

Azure Live Interpreter API: Revolutionizing Multilingual Communication

Introduction

In our globalized world, language barriers remain one of the biggest challenges in international communication. Microsoft has launched the Azure Live Interpreter API – a breakthrough technology that enables real-time voice translation without requiring pre-specified input languages. This article explores the features, functionality, and real-world applications of this revolutionary technology.

What is Azure Live Interpreter API?

Azure Live Interpreter API is a new feature in Azure Speech Translation, currently in Public Preview. This API enables real-time voice translation with automatic language detection, supporting 76 languages and 143 different locales.

Key Features

  • Zero Configuration: No need to set up input language
  • Real-time Processing: Process and translate in real-time
  • Voice Preservation: Maintains original speaker’s voice and characteristics
  • Multi-language Switching: Seamlessly handles language switching within the same session

Core Features

🎯 1. Auto Language Detection

Breakthrough Capabilities:

  • Automatically detects 76 input languages
  • Supports 143 different locales
  • No pre-configuration required
  • Handles language switching within the same conversation

Real-world Example:

Speaker: "Hello, I need help" (English)
API: Auto-detects → Translates to Vietnamese → "Xin chào, tôi cần giúp đỡ"

Speaker: "Merci beaucoup" (French)
API: Auto-switches → Translates to Vietnamese → "Cảm ơn rất nhiều"

⚡ 2. Real-time Translation

Outstanding Features:

  • Low latency, comparable to professional interpreters
  • Continuous streaming audio processing
  • High translation accuracy
  • Context and semantic understanding

Performance Comparison: | Method | Latency | Accuracy | Cost | |——–|———|———-|——| | Human Interpreter | 2-3 seconds | 95% | High | | Traditional API | 5-8 seconds | 85% | Medium | | Azure Live Interpreter | 2-4 seconds | 92% | Low |

🎵 3. Voice Synthesis

Advanced Capabilities:

  • Neural Voice Synthesis technology
  • Preserves speaker’s voice characteristics
  • Maintains tone and speaking pace
  • Natural-sounding output

How It Works

Step 1: Audio Capture

  • Real-time voice recording
  • Continuous audio stream processing
  • Audio quality optimization

Step 2: Language Detection

  • Analyze audio to identify language
  • Use machine learning models
  • Process context and semantics

Step 3: Translation

  • Translate content to target language
  • Use neural machine translation
  • Process context and semantic meaning

Step 4: Voice Synthesis

  • Generate voice with original speaker’s characteristics
  • Use Neural Voice Synthesis
  • Maintain intonation and pace

Step 5: Audio Output

  • Playback translation with low latency
  • Ensure high audio quality
  • Support multiple output formats

Real-World Applications

🏢 Business & Enterprise

1. International Meetings

Problem: Global teams struggle with language barriers in meetings

Solution:

  • Real-time translation during video calls
  • Preserve natural conversation flow
  • Support multiple languages
  • Increase meeting effectiveness

Return on Investment (ROI):

  • 300% increase in meeting participation
  • 200% improvement in decision-making speed
  • 150% increase in team collaboration

2. Customer Support

Problem: Support teams can’t communicate with international customers

Solution:

  • Real-time translation for support calls
  • Maintain customer experience quality
  • Support multiple languages
  • Reduce support costs

Return on Investment (ROI):

  • 400% increase in customer satisfaction
  • 250% reduction in support costs
  • 500% increase in global reach

3. Sales & Marketing

Problem: Sales teams can’t effectively communicate with international prospects

Solution:

  • Real-time translation during sales calls
  • Maintain relationship quality
  • Support multiple languages
  • Increase conversion rates

Return on Investment (ROI):

  • 350% increase in international sales
  • 200% improvement in conversion rates
  • 400% increase in market reach

🏥 Healthcare

4. Medical Consultations

Problem: Doctors can’t communicate with international patients

Solution:

  • Accurate medical translation in real-time
  • Support multiple languages
  • Reduce medical errors
  • Increase accessibility

Return on Investment (ROI):

  • Save many lives
  • 90% reduction in language-related medical errors
  • 500% increase in patient satisfaction

5. Emergency Services

Problem: Emergency responders can’t communicate with foreign victims

Solution:

  • Real-time emergency translation
  • Support multiple languages
  • Reduce response time
  • Save many lives

Return on Investment (ROI):

  • Save many lives
  • 95% reduction in response time
  • 300% increase in effectiveness

🎬 Content & Media

6. Live Streaming & Social Media

Problem: Content creators want to reach global audiences

Solution:

  • Live translation while maintaining personality
  • Support multiple languages
  • Increase global reach
  • Increase engagement

Return on Investment (ROI):

  • 500% increase in global reach
  • 300% increase in engagement
  • 400% increase in revenue

7. Podcast & Audio Content

Problem: Podcasts can only reach single-language audiences

Solution:

  • Automatically create multiple language versions
  • Maintain personality
  • Increase potential audience
  • Increase revenue

Return on Investment (ROI):

  • 1000% increase in potential audience
  • 400% increase in revenue
  • 200% increase in listener engagement

Creative Use Cases (Future-Ready)

8. Metaverse & VR Communication

Potential: Communicate in virtual worlds with people from everywhere Solution: Real-time translation in VR environments Impact: Create truly global virtual communities

9. AI-Powered Language Learning

Potential: Language learning requires practice with native speakers Solution: AI tutor with voice translation Impact: Personalized language learning experience

10. Smart Cities & IoT

Potential: Communicate with smart devices in native language Solution: Voice translation for IoT devices Impact: Increase accessibility for smart cities

Technical Implementation

🛠️ Installation and Setup Guide

Step 1: Install Azure Speech SDK

pip install azure-cognitiveservices-speech

Step 2: Create Azure Speech Service

  1. Sign in to Azure Portal
  2. Create “Speech Services” resource
  3. Choose appropriate region (e.g., East US)
  4. Get API Key and Region from resource

Step 3: Configure Code

import azure.cognitiveservices.speech as speechsdk

# Configure Azure Speech Service
SPEECH_KEY = "YOUR_API_KEY"
SERVICE_REGION = "eastus"
TARGET_LANGUAGE = "vi-VN"

# Create translation config
translation_config = speechsdk.translation.SpeechTranslationConfig(
    subscription=SPEECH_KEY,
    region=SERVICE_REGION
)

# Configure languages
translation_config.speech_recognition_language = "en-US"
translation_config.add_target_language(TARGET_LANGUAGE)

Step 4: Live Demo

Screenshot 1: Installation

Screenshot 2: Configuration

 

Screenshot 3: Running demo script

Screenshot 4: Translation results

Demo Results

🔧 Configuring Azure Speech Service...
✅ Configured:
   - Region: eastus
   - Source Language: en-US
   - Target Language: vi-VN

🎯 Listening... Speak now!

==================================================
📊 RESULTS:
✅ Success!
   🌍 Source Language: en-US
   📝 Original Text: Hello I am LTP
   🇻🇳 Translation: Xin chào, tôi là LTP
   ⏱️  Processing Time: 5.4s

Performance Analysis

Accuracy Comparison

Feature Human Interpreter Traditional API Azure Live Interpreter
Accuracy 95% 85% 92%
Latency 2-3 seconds 5-8 seconds 2-4 seconds
Cost High Medium Low
Scalability Low High High
Availability 24/7 24/7 24/7
Voice Quality Natural Basic Natural
Multi-language Limited Limited High

Implementation Recommendations

🚀 Step 1: Pilot Projects

  • Start with simple use cases
  • Test with small groups
  • Measure performance and user feedback
  • Iterate and improve

🎯 Step 2: Focus on High-Value Scenarios

  • Prioritize high Return on Investment (ROI) situations
  • Customer support
  • International meetings
  • Healthcare applications

🔧 Step 3: Invest in Integration

  • Need to invest in technical integration
  • Team training
  • Infrastructure setup
  • Security implementation

📈 Step 4: Monitor Performance

  • Track accuracy
  • User satisfaction
  • Cost effectiveness
  • Technical performance

📊 Step 5: Scale Gradually

  • Expand gradually after validation
  • Add more languages
  • Increase usage volume
  • Expand use cases

Conclusion

Azure Live Interpreter API represents a major breakthrough in real-time translation technology. With automatic language detection, high translation accuracy, and voice preservation, this technology has the potential to revolutionize how we communicate in our globalized world.

Why Use Azure Live Interpreter API?

  1. Break Language Barriers: Make international communication easier
  2. Increase Productivity: Reduce time and costs for translation
  3. Improve Experience: Create natural communication experiences
  4. Expand Markets: Reach global customers
  5. Gain Competitive Advantage: Have competitive edge in international markets

Final Recommendations

Azure Live Interpreter API is not just a translation tool, but an enabler for global connectivity. Organizations should:

  • Start early with pilot projects
  • Focus on value rather than technology
  • Invest in integration and training
  • Monitor and optimize continuously
  • Scale gradually based on results

With the continuous development of AI and machine learning, Azure Live Interpreter API will continue to improve and open up new possibilities in the future. This is the perfect time to start exploring and leveraging this technology!


References


 

7 Chiến Lược Tối Ưu Hóa Quy Trình Tuyển Dụng Thành Công Và Cách Tận Dụng KPI

7 Chiến Lược Tối Ưu Hóa Quy Trình Tuyển Dụng Thành Công Và Cách Tận Dụng KPI

Xin chào, tôi là Kakeya, đại diện của công ty Scuti.

Công ty chúng tôi chuyên cung cấp các dịch vụ như Phát triển phần mềm offshore và phát triển theo hình thức Labo tại Việt Nam, cũng như Cung cấp giải pháp AI tạo sinh. Gần đây, chúng tôi rất vinh dự khi nhận được nhiều yêu cầu phát triển hệ thống kết hợp với AI tạo sinh.

Đối với những ai đang làm việc trong việc tối ưu hóa quy trình tuyển dụng. Việc tìm kiếm nhân tài xuất sắc đòi hỏi thời gian và công sức, nhưng bằng cách cải tiến quy trình, bạn không chỉ có thể giảm chi phí mà còn nhanh chóng tuyển dụng ứng viên chất lượng cao. Tối ưu hóa quy trình tuyển dụng là yếu tố quan trọng giúp hỗ trợ sự phát triển của doanh nghiệp.

Bài viết này sẽ giải thích chi tiết 7 chiến lược hiệu quả để tối ưu hóa quy trình tuyển dụng, các KPI chính và các công cụ cần sử dụng. Bằng cách thực hiện những phương pháp này, bạn sẽ có thể tiến hành hoạt động tuyển dụng một cách hiệu quả và hiệu suất hơn.

Kiến thức cơ bản về tối ưu hóa quy trình tuyển dụng

Basic Knowledge of Recruitment Process Optimization​​

Nếu bạn muốn tìm hiểu thêm về AI tạo sinh, hãy xem trước bài viết này.
Bài viết liên quan: Hướng Dẫn Toàn Diện Về Triển Khai AI Tạo Sinh: Từ Kiến Thức Cơ Bản Đến Ứng Dụng Thực Tiễn Và Triển Vọng Tương Lai

Tối ưu hóa quy trình tuyển dụng là gì?

Tối ưu hóa quy trình tuyển dụng là việc cải thiện các quy trình nhằm thu hút, sàng lọc và tuyển dụng ứng viên chất lượng cao trong điều kiện thời gian và nguồn lực hạn chế. Cụ thể, điều này bao gồm tối ưu hóa toàn bộ hoạt động tuyển dụng và loại bỏ các lãng phí, với mục tiêu thu hút nhân tài một cách hiệu quả hơn.

Việc tối ưu hóa này cho phép các nhân viên tuyển dụng tập trung vào những nhiệm vụ quan trọng và giúp tuyển dụng nhân tài cần thiết cho công ty một cách nhanh chóng.

Tại sao tối ưu hóa quy trình tuyển dụng lại quan trọng?

Tối ưu hóa quy trình tuyển dụng mang lại nhiều lợi ích cho công ty. Các lý do chính như sau:

  • Giảm thời gian và chi phí: Một quy trình tuyển dụng hiệu quả giúp giảm thiểu thời gian dành cho việc sàng lọc ứng viên, lên lịch phỏng vấn và các công việc hành chính khác. Việc sử dụng các công cụ như Hệ thống Theo dõi Ứng viên (ATS) giúp đội ngũ tuyển dụng tập trung vào việc tương tác với ứng viên và cải thiện hiệu quả tuyển dụng tổng thể. Điều này cho phép các nhân viên tuyển dụng dành nhiều thời gian hơn cho các nhiệm vụ chiến lược và góp phần nâng cao năng suất chung của công ty. Hơn nữa, quy trình tối ưu hóa giúp đẩy nhanh quá trình tuyển dụng, qua đó giúp công ty có lợi thế cạnh tranh trên thị trường khốc liệt.

  • Cải thiện chất lượng tuyển dụng: Một quy trình hiệu quả dẫn đến các quyết định tuyển dụng tốt hơn. Bằng cách theo dõi các chỉ số tuyển dụng và tập trung vào các lĩnh vực quan trọng như giao tiếp với ứng viên và sàng lọc hồ sơ, công ty có thể tuyển dụng nhân tài phù hợp với các kỹ năng kỹ thuật yêu cầu và văn hóa công ty. Điều này giúp nâng cao hiệu suất công việc sau khi tuyển dụng và hỗ trợ sự phát triển lâu dài của tổ chức. Việc tuyển dụng chất lượng cao giúp tăng tỷ lệ giữ chân nhân viên và củng cố sự ổn định của tổ chức.

  • Củng cố thương hiệu nhà tuyển dụng: Một chiến lược tuyển dụng liền mạch sẽ tạo ấn tượng tốt với ứng viên. Các ứng viên trải qua một quy trình nộp đơn suôn sẻ có khả năng đánh giá tổ chức của bạn là một nơi làm việc chuyên nghiệp và hấp dẫn, từ đó củng cố thương hiệu nhà tuyển dụng. Điều này giúp thu hút nhân tài xuất sắc trong các đợt tuyển dụng sau. Một thương hiệu nhà tuyển dụng mạnh mẽ nâng cao năng lực cạnh tranh của công ty và cải thiện vị thế của công ty trong ngành

TỐI ƯU HÓA QUY TRÌNH TUYỂN DỤNG

Các Kpi Chính Để Đo Lường Tối Ưu Hóa Quy Trình Tuyển Dụng

Key KPIs for Measuring Recruitment Process Optimization

Thời gian tuyển dụng (Time to Hire)

Định nghĩa: Thời gian tuyển dụng là khoảng thời gian từ khi bắt đầu đăng tuyển cho đến khi ứng viên chấp nhận lời mời làm việc.
Tầm quan trọng: Rút ngắn thời gian tuyển dụng giúp nhân sự mới có thể bắt đầu đóng góp nhanh chóng, thúc đẩy sự phát triển của công ty. Nó cũng giảm thiểu nguy cơ mất đi những ứng viên xuất sắc.
Phương pháp đo lường: Sử dụng Hệ thống Theo dõi Ứng viên (ATS) để ghi lại các dữ liệu như ngày đăng tuyển, ngày nộp hồ sơ, ngày phỏng vấn và ngày chấp nhận lời mời, từ đó tính toán thời gian cho mỗi giai đoạn.

Chi phí tuyển dụng (Cost per Hire)

Định nghĩa: Chi phí tuyển dụng là tổng chi phí bỏ ra để tuyển dụng một ứng viên.
Tầm quan trọng: Hiểu được chi phí tuyển dụng giúp làm rõ các chi phí liên quan đến quá trình tuyển dụng và tìm kiếm các phương pháp tuyển dụng hiệu quả về chi phí.
Phương pháp tính toán: Cộng tất cả các chi phí liên quan đến hoạt động tuyển dụng, bao gồm chi phí quảng cáo tuyển dụng, phí dịch vụ của các công ty tuyển dụng, chi phí lương của nhân viên tuyển dụng, chi phí phỏng vấn và phí sử dụng hệ thống quản lý tuyển dụng, sau đó chia cho số lượng nhân sự đã tuyển dụng.

Chi phí mỗi ứng viên (Cost per Applicant)

Định nghĩa: Chi phí mỗi ứng viên là chi phí bỏ ra cho mỗi ứng viên.
Tầm quan trọng: Hiểu được chi phí mỗi ứng viên giúp bạn phân tích hiệu quả chi phí của các hoạt động tuyển dụng một cách chi tiết hơn.
Phương pháp tính toán: Cộng tất cả các chi phí liên quan đến quá trình tuyển dụng, bao gồm chi phí quảng cáo tuyển dụng, phí dịch vụ công ty tuyển dụng và chi phí lương của nhân viên tuyển dụng, sau đó chia cho số lượng ứng viên.

Chất lượng tuyển dụng (Quality of Hire)

Định nghĩa: Chất lượng tuyển dụng là một chỉ số đánh giá mức độ hiệu quả của nhân sự được tuyển dụng.
Tầm quan trọng: Đo lường chất lượng tuyển dụng giúp đánh giá hiệu quả của hoạt động tuyển dụng và cải thiện quy trình tuyển dụng.
Phương pháp đo lường: Đánh giá hiệu suất của nhân viên mới tuyển qua kết quả đánh giá hiệu suất, tỷ lệ hoàn thành mục tiêu, đánh giá từ cấp trên và phản hồi từ đồng nghiệp.

Trải nghiệm ứng viên (Candidate Experience)

Định nghĩa: Trải nghiệm ứng viên là một chỉ số đánh giá mức độ hài lòng của ứng viên trong suốt quy trình tuyển dụng.
Tầm quan trọng: Mức độ hài lòng của ứng viên càng cao, hình ảnh thương hiệu của công ty càng được cải thiện, và công ty sẽ dễ dàng thu hút được nhân tài xuất sắc hơn.
Phương pháp đo lường: Đo lường sự hài lòng của ứng viên bằng cách thực hiện khảo sát hoặc thu thập phản hồi sau khi phỏng vấn.

Tỷ lệ giữ chân nhân viên (Employee Retention Rate)

Định nghĩa: Tỷ lệ giữ chân nhân viên là tỷ lệ phần trăm nhân viên vẫn ở lại công ty trong một khoảng thời gian nhất định.
Tầm quan trọng: Tỷ lệ giữ chân nhân viên cao giúp giảm chi phí tuyển dụng và duy trì sự ổn định của tổ chức.
Phương pháp tính toán: Lấy số lượng nhân viên bắt đầu tại thời điểm đầu kỳ trừ đi số lượng nhân viên nghỉ việc trong kỳ, sau đó chia cho số lượng nhân viên ban đầu.

CÁC KPI CHÍNH ĐỂ ĐO LƯỜNG TỐI ƯU HÓA QUY TRÌNH TUYỂN DỤNG

7 Chiến lược để đạt được tối ưu hóa quy trình tuyển dụng

7 Strategies for Achieving Recruitment Process Optimization

1. Triển khai Hệ thống Theo dõi Ứng viên (ATS)

Hệ thống Theo dõi Ứng viên (ATS) là công cụ thiết yếu để tối ưu hóa toàn bộ quy trình tuyển dụng. Nó cung cấp nhiều tính năng như quản lý ứng viên, theo dõi quá trình tuyển chọn và tự động hóa giao tiếp, giúp giảm bớt gánh nặng cho nhân viên tuyển dụng và tăng tốc quy trình tuyển dụng.

Điều này giúp nhân viên tuyển dụng dành nhiều thời gian hơn cho các nhiệm vụ chiến lược và góp phần nâng cao năng suất chung của công ty.

2. Tạo thông tin tuyển dụng hấp dẫn

Thông tin tuyển dụng hấp dẫn là yếu tố quan trọng để thu hút nhiều ứng viên hơn. Việc truyền tải hiệu quả sự hấp dẫn của công ty, công việc và các phúc lợi sẽ thu hút sự chú ý của ứng viên.

  • Cụ thể về công việc và trách nhiệm: Bằng cách tránh các diễn đạt mơ hồ và mô tả rõ ràng các nhiệm vụ cụ thể, phạm vi trách nhiệm và kết quả kỳ vọng, ứng viên sẽ dễ dàng đánh giá xem họ có phù hợp với vai trò đó hay không.

  • Văn hóa và giá trị công ty: Tạo thông tin tuyển dụng phản ánh văn hóa và giá trị của công ty sẽ thu hút những ứng viên đồng cảm và nâng cao ý thức thuộc về công ty.

  • Cơ hội phát triển: Nhấn mạnh các sáng kiến hỗ trợ sự phát triển của nhân viên, như hệ thống đào tạo và con đường sự nghiệp, sẽ cho thấy công ty bạn là một nơi làm việc hấp dẫn đối với những ứng viên có động lực cao.

3. Triển khai các chiến lược tìm kiếm hiệu quả

Để thu hút nhân tài phù hợp, các chiến lược tìm kiếm hiệu quả là điều không thể thiếu. Bằng cách kết hợp các kênh khác nhau như quảng cáo tuyển dụng, công ty giới thiệu nhân sự và tuyển dụng trực tiếp, bạn có thể tìm kiếm ứng viên từ một phạm vi rộng hơn.

  • Quảng cáo tuyển dụng: Quảng cáo tuyển dụng là cách hiệu quả để tiếp cận nhiều ứng viên. Tuy nhiên, việc xác định đúng phương tiện đăng tải và đối tượng mục tiêu là rất quan trọng.

  • Công ty giới thiệu nhân sự: Các công ty giới thiệu nhân sự giúp thúc đẩy nhanh chóng quá trình tuyển dụng bằng cách giới thiệu những ứng viên có chuyên môn và kinh nghiệm cao.

  • Tuyển dụng trực tiếp: Tuyển dụng trực tiếp là khi công ty tiếp cận ứng viên trực tiếp. Bằng cách sử dụng các mạng xã hội như LinkedIn hoặc trang web của công ty, bạn có thể tìm kiếm và tiếp cận ứng viên trực tiếp.

4. Tối ưu hóa quy trình phỏng vấn

Quy trình phỏng vấn là một phần tốn nhiều thời gian và công sức trong hoạt động tuyển dụng. Bằng cách đào tạo người phỏng vấn, làm rõ tiêu chí đánh giá và cải tiến phương pháp phỏng vấn, quy trình phỏng vấn có thể được tối ưu hóa.

  • Đào tạo người phỏng vấn: Người phỏng vấn cần phát triển kỹ năng để đánh giá ứng viên một cách chính xác. Việc chia sẻ mục tiêu phỏng vấn, cách đặt câu hỏi và các tiêu chí đánh giá qua các buổi đào tạo giúp nâng cao chất lượng phỏng vấn.

  • Làm rõ tiêu chí đánh giá: Nếu các người phỏng vấn có tiêu chí đánh giá khác nhau, việc đánh giá công bằng sẽ trở nên khó khăn. Bằng cách làm rõ và chia sẻ tiêu chí đánh giá trước, việc đánh giá khách quan sẽ trở nên khả thi.

  • Cải tiến phương pháp phỏng vấn: Bằng cách cải tiến phương pháp phỏng vấn, bạn có thể thu thập thêm thông tin và đánh giá chính xác hơn năng lực của ứng viên. Ví dụ, phỏng vấn nhóm, nghiên cứu tình huống và thuyết trình có thể được áp dụng để đánh giá khả năng giao tiếp và giải quyết vấn đề của ứng viên.

5. Tăng cường giao tiếp với ứng viên

Giao tiếp với ứng viên là yếu tố quan trọng trong suốt quá trình tuyển dụng. Việc phản hồi nhanh chóng, giải thích rõ ràng và đưa ra phản hồi phù hợp sẽ giúp nâng cao hình ảnh công ty và dễ dàng thu hút nhân tài.

  • Phản hồi nhanh chóng: Trả lời các câu hỏi của ứng viên càng sớm càng tốt. Phản hồi chậm có thể ảnh hưởng xấu đến hình ảnh công ty.

  • Giải thích rõ ràng: Giải thích rõ ràng quy trình tuyển dụng và công việc cho ứng viên. Việc giải tỏa các thắc mắc và lo lắng của ứng viên sẽ giúp họ cảm thấy yên tâm hơn.

  • Phản hồi phù hợp: Sau phỏng vấn, cung cấp phản hồi mang tính xây dựng cho ứng viên. Chia sẻ kết quả tuyển chọn cũng như những điểm cần cải thiện sẽ giúp hỗ trợ sự phát triển của ứng viên.

TĂNG CƯỜNG GIAO TIẾP VỚI ỨNG VIÊN

6. Xây dựng thương hiệu nhà tuyển dụng

Thương hiệu nhà tuyển dụng là hình ảnh mà công ty xây dựng trong mắt các ứng viên. Bằng cách xây dựng một thương hiệu nhà tuyển dụng hấp dẫn, công ty có thể thu hút nhiều nhân tài xuất sắc hơn.

  • Truyền thông về triết lý và tầm nhìn công ty: Truyền đạt rõ ràng triết lý và tầm nhìn của công ty sẽ thu hút những ứng viên đồng cảm với chúng.

  • Chia sẻ tiếng nói của nhân viên: Việc chia sẻ tiếng nói của nhân viên giúp truyền tải cụ thể hơn văn hóa và môi trường làm việc của công ty.

  • Đảm bảo tính minh bạch trong tuyển dụng: Công khai quy trình tuyển dụng và các tiêu chí đánh giá giúp công ty xây dựng được niềm tin từ ứng viên.

7. Cải tiến liên tục qua phân tích dữ liệu

Phân tích dữ liệu tuyển dụng giúp phát hiện vấn đề và các điểm cần cải thiện, qua đó nâng cao hiệu quả hoạt động tuyển dụng.

  • Phân tích các chỉ số tuyển dụng: Phân tích các chỉ số như thời gian tuyển dụng, chi phí tuyển dụng, chi phí mỗi ứng viên, hiệu suất sau tuyển dụng và sự hài lòng của ứng viên giúp đánh giá hiệu quả và năng suất của các hoạt động tuyển dụng.

  • Phân tích dữ liệu ứng viên: Phân tích các đặc điểm, kỹ năng và kinh nghiệm của ứng viên giúp thực hiện các hoạt động tuyển dụng phù hợp với đối tượng mục tiêu.

  • Phân tích dữ liệu phỏng vấn: Phân tích các đánh giá của người phỏng vấn, câu hỏi và câu trả lời của ứng viên giúp cải tiến quy trình phỏng vấn.

Các công cụ được khuyến nghị để hỗ trợ tối ưu hóa quy trình tuyển dụng

Recommended Tools to Support Recruitment Process Optimization

1. Hệ thống Theo dõi Ứng viên (ATS)

Tính năng: Quản lý ứng viên, theo dõi tình trạng tuyển chọn, tự động hóa giao tiếp, v.v.
Lợi ích: Tối ưu hóa toàn bộ quy trình tuyển dụng, giảm gánh nặng cho nhân viên tuyển dụng, trực quan hóa dữ liệu tuyển dụng.

2. Công cụ phỏng vấn video

Tính năng: Tiến hành phỏng vấn trực tuyến.
Lợi ích: Giảm thiểu thời gian và chi phí, loại bỏ các giới hạn về địa lý, cải thiện sự tiện lợi cho ứng viên.

3. Công cụ tuyển dụng qua mạng xã hội

Tính năng: Sử dụng mạng xã hội để tuyển dụng nhân tài.
Lợi ích: Mở rộng phạm vi tiếp cận đối tượng mục tiêu, nâng cao thương hiệu nhà tuyển dụng, tăng cường sự tương tác với ứng viên.

4. Công cụ tích hợp trí tuệ nhân tạo (AI)

Tính năng: Tự động sàng lọc hồ sơ, kết nối ứng viên, tự động hóa phỏng vấn, v.v.
Lợi ích: Tối ưu hóa toàn bộ quy trình tuyển dụng, nâng cao chất lượng nhân sự, giảm chi phí tuyển dụng.

Kết Luận

Conlusion

Tối ưu hóa quy trình tuyển dụng là một nỗ lực thiết yếu để thúc đẩy sự phát triển của doanh nghiệp. Bằng cách thiết lập các KPI phù hợp và theo dõi chúng một cách liên tục, bạn có thể xác định các vấn đề và điểm cần cải thiện trong hoạt động tuyển dụng, từ đó triển khai các chiến lược hiệu quả hơn. Hơn nữa, việc sử dụng các công cụ như Hệ thống Theo dõi Ứng viên (ATS) giúp tối ưu hóa toàn bộ quy trình tuyển dụng và giảm bớt gánh nặng cho nhân viên tuyển dụng.