🧠 Codex CLI vs Claude Code vs Gemini CLI

1) Codex CLI — Tóm tắt khả năng & các nâng cấp chính

Codex CLI là agent chạy ngay trong terminal, đóng vai trò “pair programmer” biết lập kế hoạch, dùng công cụ và tự kiểm tra đầu ra theo từng bước. Bản nâng cấp 2025 tập trung vào khả năng cộng tác thời gian thực, theo dõi tiến độ, và kiểm soát quyền truy cập an toàn — giúp bạn chuyển từ các yêu cầu nhỏ tương tác nhanh đến nhiệm vụ dài hơi (refactor, thêm tính năng, viết test) mà không rời môi trường làm việc.

Khả năng cốt lõi

  • Agentic coding trong terminal: ra lệnh, nhận kế hoạch, xem log/diff, và áp dụng thay đổi trực tiếp ở thư mục làm việc; phù hợp cả phiên ngắn (prompt–sửa–chạy) lẫn nhiệm vụ nhiều bước.
  • Hiểu và điều hướng codebase: đọc tập tin liên quan, đề xuất chỉnh sửa/viết mới, chạy lệnh build/test để xác thực; có thể duy trì ngữ cảnh dài hơn nhờ cơ chế nén hội thoại.
  • Tận dụng mô hình tối ưu cho coding: hỗ trợ dùng GPT-5-Codex cho tác vụ cục bộ trong CLI (tùy chọn), cho chất lượng mã và khả năng điều khiển tốt hơn.
  • Tích hợp an toàn theo quyền: làm việc ở các mức cấp quyền khác nhau (chỉ đọc/duyệt thủ công, tự động trong workspace, hoặc toàn quyền có mạng) để cân bằng tốc độ và kiểm soát rủi ro.

Các nâng cấp nổi bật (2025)

  • Đính kèm & chia sẻ hình ảnh ngay trong CLI: gửi screenshot/wireframe/diagram để tạo ngữ cảnh UI chung, từ đó agent bám sát ý đồ thiết kế hơn.
  • Theo dõi tiến độ bằng to-do list: CLI hiển thị các bước việc, trạng thái hoàn thành, và cho phép tiếp tục/điều chỉnh khi tác vụ phức tạp.
  • Công cụ tích hợp tốt hơn: thêm web search và MCP (Model Context Protocol) để kết nối hệ thống bên ngoài với độ chính xác sử dụng công cụ cao hơn.
  • Terminal UI mới: hiển thị lệnh công cụ và diff rõ ràng, dễ theo dõi; giúp bạn duyệt và chấp thuận thay đổi nhanh.
  • Ba chế độ phê duyệt đơn giản: Read-only (duyệt thủ công), Auto (toàn quyền trong workspace, cần duyệt khi ra ngoài), Full access (đọc file bất kỳ & chạy lệnh có mạng); kèm cơ chế nén hội thoại để giữ phiên làm việc dài.
  • Khả dụng & cài đặt nhanh: gói CLI phát hành dạng open-source; cài qua npm và dùng chung tài khoản ChatGPT/Codex để đồng bộ trải nghiệm giữa máy cục bộ, IDE và cloud.

Ý nghĩa thực tiễn

  • Cho phiên ngắn: phản hồi nhanh, sinh/ghi mã, xem diff và hợp nhất từng phần một — rất hợp xây dựng nguyên mẫu, sửa lỗi, viết test.
  • Cho nhiệm vụ dài hơi: theo dõi to-do, dùng công cụ đúng lúc (search/MCP), duy trì ngữ cảnh nhiều giờ; giảm tải việc lặp thủ công và rủi ro “lạc ngữ cảnh”.
  • Cho đội ngũ coi trọng an toàn: mặc định sandbox vô hiệu mạng; mọi thao tác “nhạy cảm” đều có cơ chế xin phép, log minh bạch, và có thể giới hạn miền mạng tin cậy khi cần.

2) Gemini CLI — kết nối & ngữ cảnh dài

Gemini CLI đưa mô hình Gemini vào terminal với thế mạnh nổi bật là khả năng gom ngữ cảnh lớnkhả năng “kéo tri thức ngoài” (web/search, MCP) khi cần. Cách làm việc phù hợp là vừa viết mã vừa tổng hợp tài liệu, quy chuẩn, ví dụ và snippet từ nhiều nguồn ngay trong một phiên.

Khả năng & trải nghiệm chính

  • Tổng hợp đa nguồn: đọc nhiều tệp README/changelog/guide cùng lúc, rút ý và hợp nhất thành checklist hoặc mã khởi tạo.
  • Grounding khi thiếu ngữ cảnh: có thể tra cứu rồi “điền chỗ trống” (thư viện, API mẫu, quy ước thiết kế) để tiếp tục triển khai.
  • Tích hợp công cụ qua MCP/tiện ích: mở rộng tác vụ từ terminal (chạy lệnh, xử lý tệp, thao tác hệ thống) trong cùng một luồng hội thoại.
  • Thích hợp giai đoạn khởi tạo: bootstrap dự án, dựng khung cấu trúc, tạo script cài đặt & cấu hình linter/test nhanh.

Điểm mạnh

  • Gom và “tiêu hoá” tài liệu rất tốt, hữu ích khi yêu cầu dính nhiều quy chuẩn/tiêu chí.
  • Tiện ích terminal đa dạng; có thể chuyển từ thảo luận sang thực thi lệnh liền mạch.
  • Phù hợp các bài toán phải vừa tra cứu vừa phát triển (setup, tích hợp nhiều dịch vụ, tạo sample end-to-end).

Điểm cần lưu ý

  • Đầu ra dễ dài; nên yêu cầu rút gọn hoặc chỉ ghi thay đổi tối thiểu để tránh mã/cấu hình thừa.
  • Ở bài toán nhiều ràng buộc (ví dụ: vật lý/va chạm trong game), logic đôi khi thiếu ổn định — nên kèm test nhỏ để “neo” hành vi mong muốn.
  • Prompt càng dài càng dễ tăng độ trễ; chia nhỏ mục tiêu giúp cải thiện tốc độ và độ chính xác.

Khi nào nên dùng / không nên dùng

  • Nên dùng: khởi tạo dự án, hợp nhất guideline, tạo khung CI/CD, viết script cài đặt; tích hợp SDK/API mới có nhiều tài liệu rải rác.
  • Không lý tưởng: tác vụ yêu cầu logic thời gian thực nhạy cảm (gameplay/physics), hoặc tối ưu UI/animation vi mô cần tinh chỉnh thủ công.

3) Claude Code — độ sâu & tái cấu trúc

Claude Code thiên về hiểu dự ángiữ tính nhất quán trên codebase lớn. Công cụ này làm tốt các việc như điều hướng toàn repo, chuẩn hoá kiến trúc, viết module theo convention, chạy test và thậm chí đề xuất PR hoàn chỉnh với mô tả rõ ràng.

Khả năng & trải nghiệm chính

  • Refactor quy mô lớn: phát hiện trùng lặp, tách mô-đun, chuẩn hoá naming/foldering, giải thích tác động kiến trúc.
  • Review có lý do: output thường kèm chú thích “vì sao” và “cách kiểm chứng”, thuận tiện cho code review theo nhóm.
  • Giữ trạng thái & luồng làm việc: có thể theo dõi đề xuất qua nhiều bước (quét, đổi tên, cập nhật test, cập nhật tài liệu).
  • UI/animation có tổ chức: ở bài front-end đòi hỏi chuyển cảnh hoặc nhiều trạng thái, cách tổ chức logic thường gọn gàng, ít “giật cục”.

Điểm mạnh

  • Rất phù hợp với kế hoạch tái cấu trúc/chuẩn hoá đa mô-đun hoặc khi cần củng cố ranh giới giữa các layer.
  • Đầu ra dễ đọc, có chú thích; thuận lợi cho duy trì lâu dài và onboarding thành viên mới.
  • Hỗ trợ quy trình nhóm: có thể đề xuất commit/PR với mô tả chi tiết, checklist kiểm thử và hướng dẫn rollout.

Điểm cần lưu ý

  • Tốc độ không phải thế mạnh; cần cân nhắc khi deadline gấp hoặc chỉ sửa 1–2 file nhỏ.
  • Để đạt “đúng gu” kiến trúc, nên mô tả convention (naming, foldering, state, test strategy) ngay từ đầu.
  • Với việc rất nhỏ, chi phí thời gian có thể lớn hơn lợi ích so với các công cụ hướng tốc độ.

Khi nào nên dùng / không nên dùng

  • Nên dùng: refactor lớn, nâng cấp framework, tách mô-đun, chuẩn hoá API, dọn nợ kỹ thuật, viết/hoàn thiện test.
  • Không lý tưởng: thử nghiệm nhanh/POC siêu nhỏ, tinh chỉnh UI/copywriting vi mô cần phản hồi tức thì.

4) Bảng so sánh chính (chuẩn hoá)

Tiêu chí Codex CLI Gemini CLI Claude Code
Model nền OpenAI Codex (tối ưu coding) Gemini 2.5 Pro Claude Sonnet 4
Context window ~128K tokens ~1M tokens ~200K tokens (xấp xỉ)
Truy cập FS & Shell
Tính năng khác biệt Tốc độ phản hồi nhanh, vòng lặp ngắn Kéo tri thức ngoài, ngữ cảnh dài Quét codebase, gợi ý PR, chuẩn hoá
Phù hợp nhất cho Prototype, sửa lỗi, tác vụ cục bộ Quy trình “viết mã + tra cứu” Dự án nhiều mô-đun, refactor/maintain
Tốc độ/độ trễ Nhanh nhất Trung bình Chậm hơn
UI/Animation Thiên chức năng Khá tốt, phụ thuộc prompt Mượt & có tổ chức
Xử lý lỗi Cần can thiệp tay ở logic phức tạp Ổn nếu prompt rõ Phát hiện & sửa tốt, kèm giải thích

5) Demo 2 tác vụ cụ thể

Task 1 — Platformer 2D phong cách Super Mario

Prompt: “Tạo một trò chơi platformer 2D cơ bản theo phong cách Super Mario. Trò chơi nên có bố cục đơn giản dựa trên các ô vuông với Mario đứng trên các khối đất, nền trời với những đám mây, khối hình dấu hỏi phía trên và một đường ống màu xanh lá cây gần đó. Bao gồm các cơ chế cơ bản như di chuyển trái/phải và nhảy bằng các phím mũi tên trên bàn phím. Mô phỏng trọng lực và va chạm với các nền tảng. Sử dụng đồ họa theo phong cách pixel-art với các tài nguyên cục bộ được nhúng hoặc tham chiếu.”

Codex CLI

Gemini CLI

Claude Code

Task 2 — Đồng hồ động theo chủ đề thời tiết

Prompt: “Thiết kế và phát triển một bảng điều khiển đồng hồ động theo chủ đề thời tiết với giao diện trực quan phong phú chỉ bằng HTML, CSS và JavaScript. Mục tiêu chính là tạo ra một giao diện đồng hồ thời gian thực, không chỉ hiển thị thời gian hiện tại mà còn tự động điều chỉnh theo thời gian trong ngày. Triển khai bốn hiệu ứng chuyển tiếp nền động thể hiện bình minh, trưa, hoàng hôn và đêm, mỗi hiệu ứng có màu sắc và các yếu tố động riêng biệt như mây trôi, sao lấp lánh, hoặc mặt trời/mặt trăng mọc/lặn, và cung cấp tùy chọn chuyển đổi giữa định dạng thời gian 12 giờ và 24 giờ. Để tăng thêm tính tương tác, hãy thêm một phần hiển thị câu trích dẫn động lực hoặc năng suất theo từng giờ.”

Codex CLI

Gemini CLI

Claude Code

6) Ưu & Nhược điểm thực tế — góc nhìn của bạn

6.1 Codex CLI

Ưu điểm

  • Tốc độ phản hồi rất nhanh; phù hợp vòng lặp “chia nhỏ — chạy thử — sửa — lặp”.
  • Trải nghiệm terminal gọn gàng: xem diff → áp dụng, chạy test/format ngay trong CLI.
  • Ổn định ở tác vụ nhỏ/vừa; giữ mạch công việc tốt khi bạn dẫn dắt bằng checklist/to-do.

Nhược điểm

  • UI/animation phức tạp (parallax, canvas, webGL) thường cần chỉnh tay thêm; thiên về chức năng.
  • Logic nhiều tầng, đa mô-đun: đôi lúc bỏ sót ràng buộc; cần test bao phủ để duy trì chất lượng.
  • Tài liệu hoá sinh tự động thường ngắn; cần yêu cầu bổ sung “why/how”.

6.2 Gemini CLI

Ưu điểm

  • Ngữ cảnh rất lớn: đọc nhiều tệp/README/changelog cùng lúc, tổng hợp nguồn nhanh.
  • Kéo tri thức ngoài (web/search) khi thiếu snippet/tiêu chuẩn, rồi hợp nhất vào triển khai.
  • Hữu ích khi khởi tạo dự án mới cần nhiều guideline & tài liệu tham chiếu.

Nhược điểm

  • Đầu ra thường dài; cần rút gọn để tránh code/CSS dư hoặc cấu trúc rườm rà.
  • Logic chưa ổn định ở bài toán nhiều ràng buộc (ví dụ game với va chạm/trọng lực).
  • Độ trễ trung bình; prompt càng dài càng tốn thời gian suy nghĩ.

6.3 Claude Code

Ưu điểm

  • Hiểu dự án tốt, nổi bật ở refactor, gom code trùng, đặt tên có chủ đích, output có chú thích.
  • UI/animation mượt, trạng thái rõ; phù hợp demo front-end đòi hỏi chuyển cảnh tinh tế.
  • Phù hợp quy trình nhóm: có thể sinh commit/PR có mô tả, tài liệu hoá bài bản.

Nhược điểm

  • Tốc độ chậm hơn; không phù hợp khi cần xử lý “siêu nhanh”.
  • Phụ thuộc prompt chi tiết để đạt kiến trúc “đúng gu”.
  • Với tác vụ rất nhỏ (1–2 file), chi phí thời gian đôi khi lớn hơn lợi ích so với Codex.

7) Chọn công cụ nào theo nhu cầu

Muốn tốc độ & vòng lặp ngắn

Chọn Codex. Giao tác vụ nhỏ-vừa, kiểm diff theo bước; tận dụng test/format tự động để “khoanh vùng lỗi” nhanh.

Muốn kéo ngữ cảnh ngoài & tìm kiếm

Chọn Gemini. Gom README, guideline, link web → hợp nhất checklist & script; hữu ích khi khởi tạo dự án nhiều ràng buộc.

Muốn refactor & quản lý codebase lớn

Chọn Claude. Giao nhiệm vụ tổ chức lại cấu trúc, sinh PR có mô tả; yêu cầu giải thích kiến trúc & tác động.

Shipping with Codex

Codex: Kỹ Sư Phần Mềm AI Đã Tạo Ra “Sự Thay Đổi Cảm Hứng Lớn” (Vibe Shift) Trong Lập Trình

Gần đây, tại OpenAI, chúng ta đã chứng kiến một điều phi thường: một “sự thay đổi cảm hứng lớn” (vibe shift) trong cách chúng tôi xây dựng phần mềm. Kể từ tháng Tám, mức độ sử dụng Codex—kỹ sư phần mềm AI của chúng tôi—đã tăng gấp mười lần. Codex không chỉ là một công cụ; nó giống như một đồng nghiệp con người mà bạn có thể lập trình đôi, giao phó công việc hoặc đơn giản là để nó tự động thực hiện các nhiệm vụ phức tạp.

Sự bùng nổ này không phải ngẫu nhiên. Nó là kết quả của hàng loạt cập nhật lớn, biến Codex thành một tác nhân mạnh mẽ, an toàn và trực quan hơn, hoạt động trên mọi nền tảng mà bạn xây dựng.

1. Những Cập Nhật Đã Tạo Nên Sự Thay Đổi Lớn

Đại Tu Hoàn Toàn Tác Nhân (Agent Overhaul)

Chúng tôi định nghĩa tác nhân Codex là sự kết hợp của hai yếu tố: mô hình lý luậnbộ công cụ (harness) cho phép nó hành động và tạo ra giá trị.

  • Mô Hình Nâng Cấp: Ban đầu, chúng tôi đã ra mắt GPT-5, mô hình tác nhân tốt nhất của mình. Dựa trên phản hồi, chúng tôi tiếp tục tối ưu hóa và cho ra mắt GPT-5 Codex, một mô hình được tinh chỉnh đặc biệt cho công việc mã hóa. Người dùng mô tả nó như một “kỹ sư cấp cao thực thụ” vì nó không ngại đưa ra phản hồi thẳng thắn và từ chối những ý tưởng tồi.
  • Hệ Thống Công Cụ Mới (Harness): Chúng tôi đã viết lại hoàn toàn bộ công cụ để tận dụng tối đa các mô hình mới. Hệ thống này bổ sung các tính năng quan trọng như lập kế hoạch (planning), nén tự động bối cảnh (autoco compaction)—cho phép các cuộc trò chuyện và tương tác cực kỳ dài—và hỗ trợ cho MCP (Multi-Context Protocol).

Trải Nghiệm Người Dùng Được Tinh Chỉnh

Dù mô hình và tác nhân mạnh mẽ, phản hồi ban đầu cho thấy giao diện dòng lệnh (CLI) còn “sơ khai”.

  • CLI Revamp: Chúng tôi đã đại tu CLI, đơn giản hóa chế độ phê duyệt (approvals modes), tạo ra giao diện người dùng dễ đọc hơn và thêm nhiều chi tiết tinh tế. Quan trọng nhất, Codex CLI hiện mặc định hoạt động với sandboxing (môi trường hộp cát), đảm bảo an toàn theo mặc định trong khi vẫn trao toàn quyền kiểm soát cho người dùng.
  • Tiện Ích Mở Rộng IDE: Để hỗ trợ người dùng muốn xem và chỉnh sửa code cùng lúc với việc cộng tác với Codex, chúng tôi đã phát hành một extension bản địa (native extension) cho IDE. Tiện ích này hoạt động với VS Code, Cursor và các bản fork phổ biến khác. Nó đã bùng nổ ngay lập tức, thu hút 100.000 người dùng trong tuần đầu tiên—bằng cách sử dụng cùng một tác nhân mạnh mẽ và bộ công cụ mã nguồn mở (open-source harness) đã cung cấp sức mạnh cho CLI.
  • Codex Cloud Nhanh Hơn: Chúng tôi đã nâng cấp Codex Cloud để chạy nhiều tác vụ song song, tăng tốc độ tác vụ Cloud lên 90%. Tác vụ Cloud giờ đây có thể tự động thiết lập các phụ thuộc, thậm chí xác minh công việc bằng cách chụp ảnh màn hình và gửi cho bạn.

Codex Hoạt Động Mọi Nơi

Codex giờ đây hoạt động tích hợp sâu vào quy trình làm việc của bạn:

  • Slack và GitHub: Codex có thể được giao nhiệm vụ trực tiếp trong các công cụ cộng tác như Slack. Nó nhận toàn bộ bối cảnh từ luồng trò chuyện, tự mình khám phá vấn đề, viết code, và đăng giải pháp cùng với bản tóm tắt chỉ sau vài phút.
  • Review Code Độ Tin Cậy Cao: Việc đánh giá và duyệt code đang trở thành nút thắt cổ chai lớn. Chúng tôi đã huấn luyện GPT-5 Codex đặc biệt để thực hiện review code cực kỳ kỹ lưỡng (ultra thorough). Nó khám phá toàn bộ code và các phụ thuộc bên trong container của mình, xác minh ý định và việc triển khai. Kết quả là những phát hiện có tín hiệu rất cao (high signal), đến mức nhiều đội đã bật nó theo mặc định, thậm chí cân nhắc bắt buộc.

2. Codex Đang Thúc Đẩy OpenAI Như Thế Nào

Kết quả nội bộ tại OpenAI là minh chứng rõ ràng nhất cho sức mạnh của Codex:

  • 92% nhân viên kỹ thuật của OpenAI sử dụng Codex hàng ngày (tăng từ 50% vào tháng Bảy).
  • Các kỹ sư sử dụng Codex nộp 70% nhiều PR (Pull Requests) hơn mỗi tuần.
  • Hầu như tất cả các PR đều được Codex review. Khi nó tìm thấy lỗi, các kỹ sư cảm thấy hào hứng vì nó giúp tiết kiệm thời gian và tăng độ tin cậy khi triển khai.

3. Các Quy Trình Làm Việc Thực Tế Hàng Ngày

Các kỹ sư của chúng tôi đã chia sẻ những ví dụ thực tế về cách họ sử dụng Codex để giải quyết các vấn đề phức tạp.

Trường Hợp 1: Lặp Lại Giao Diện Người Dùng (UI) Với Bằng Chứng Hình Ảnh (Nacho)

Nacho, kỹ sư iOS, đã chia sẻ quy trình làm việc tận dụng tính năng đa phương thức (multimodal) của Codex:

  • Vấn Đề: Trong công việc front-end, 10% công việc đánh bóng cuối cùng—như căn chỉnh header/footer—thường chiếm đến 90% thời gian.
  • Giải Pháp: Nacho giao cho Codex nhiệm vụ triển khai UI từ một bản mockup. Khác với các agent cũ (được ví như “kỹ sư tập sự”), Codex (được ví như “kỹ sư cấp cao”) xác minh công việc của nó.
  • Quy Trình TDD & Multimodal:
    1. Nacho cung cấp cho Codex một công cụ đơn giản: một script Python (do Codex viết) để trích xuất các snapshot (ảnh chụp giao diện) từ các SwiftUI Previews.
    2. Nó được hướng dẫn sử dụng công cụ này để xác minh trực quan code UI mà nó viết.
    3. Codex lặp đi lặp lại: Viết code > Chạy test/Snapshot > Sửa lỗi cho đến khi giao diện đạt đến độ hoàn hảo về pixel (pixel perfect).
  • Kết Quả: Nacho có thể để Codex làm việc trên những chi tiết nhỏ (10% độ đánh bóng) trong khi anh làm những việc khác, biết rằng nó sẽ tự kiểm tra công việc của mình bằng hình ảnh.

Trường Hợp 2: Mở Rộng Giới Hạn Tác Vụ Lớn (Fel)

Fel, được biết đến là người có phiên làm việc Codex lâu nhất (hơn bảy giờ) và xử lý nhiều token nhất (hơn 150 triệu), đã chứng minh cách anh thực hiện các tác vụ refactor lớn chỉ với vài lời nhắc.

  • Vấn Đề: Thực hiện một refactor lớn (như thay đổi 15.000 dòng code) trong các dự án phức tạp (như bộ phân tích JSON cá nhân của anh) thường dẫn đến việc tất cả các bài kiểm tra thất bại trong thời gian dài.
  • Giải Pháp: Kế Hoạch Thực Thi (Exec Plan):
    1. Fel yêu cầu Codex viết một đặc tả (spec)—được gọi là plans.md—để triển khai tính năng, giao cho nó nhiệm vụ nghiên cứu thư viện và cách tích hợp.
    2. Anh định nghĩa plans.md là một “tài liệu thiết kế sống” (living document) mà Codex phải liên tục cập nhật, bao gồm mục tiêu lớn, danh sách việc cần làm, tiến trình, và nhật ký quyết định (decision log).
    3. Anh sử dụng thuật ngữ neo “exec plan” để đảm bảo mô hình biết khi nào cần tham chiếu và phản ánh lại tài liệu này.
    4. Sau khi Fel phê duyệt kế hoạch, anh ra lệnh: “Implement” (Thực thi).
  • Kết Quả: Codex có thể làm việc một cách hiệu quả trong nhiều giờ (thậm chí hơn một giờ trong buổi demo) trên một tính năng lớn, sử dụng plans.md như bộ nhớ và kim chỉ nam. Trong một phiên, nó đã tạo ra 4.200 dòng code chỉ trong khoảng một giờ—mọi thứ đều được kiểm tra và vượt qua.

Trường Hợp 3: Vòng Lặp Sửa Lỗi và Review Tại Chỗ (Daniel)

Daniel, một kỹ sư trong nhóm Codex, đã giới thiệu quy trình làm việc slash review mới, đưa khả năng review code chất lượng cao của GPT-5 Codex xuống môi trường cục bộ (local).

  • Vấn Đề: Ngay cả sau khi hoàn thành code, các kỹ sư cần một bộ mắt mới không bị thiên vị để tìm ra các lỗi khó.
  • Giải Pháp: Slash Review: Trước khi gửi PR, Daniel sử dụng lệnh /review trong CLI.
    • Anh chọn duyệt so với nhánh gốc (base branch), tương tự như một PR.
    • GPT-5 Codex bắt đầu luồng review chuyên biệt: Nó nghiên cứu sâu các tập tin, tìm kiếm các lỗi kỹ thuật, và thậm chí viết/chạy các script kiểm tra để xác minh các giả thuyết lỗi trước khi báo cáo.
    • Mô hình thiên vị: Luồng review chạy trong một luồng riêng biệt, có bối cảnh mới mẻ (fresh context), loại bỏ bất kỳ thiên vị triển khai (implementation bias) nào từ cuộc trò chuyện trước.
  • Vòng Lặp Sửa Lỗi: Khi Codex tìm thấy một vấn đề P0/P1, Daniel chỉ cần gõ “Please fix”.
  • Kết Quả: Codex sửa lỗi, và Daniel có thể chạy /review lần nữa cho đến khi nhận được “thumbs up” (chấp thuận) cuối cùng. Điều này đảm bảo code được kiểm tra kỹ lưỡng, được sửa lỗi cục bộ trước khi push, tiết kiệm thời gian và đảm bảo độ tin cậy cao hơn.

 

Ba chức năng chính của Codex, được nhấn mạnh trong bài thuyết trình, là:

  1. Lập Trình Đôi và Triển Khai Code (Implementation & Delegation):
    • Codex hoạt động như một đồng đội lập trình đôi trong IDE/CLI, giúp bạn viết code nhanh hơn.
    • Nó có thể nhận ủy quyền (delegate) các tác vụ lớn hơn (như refactor hoặc thêm tính năng) và tự thực hiện trong môi trường Cloud/Sandboxing, bao gồm cả việc tự thiết lập dependencies và chạy song song.
  2. Xác Minh và Kiểm Thử Tự Động (Verification & TDD):
    • Codex tích hợp sâu với quy trình Test-Driven Development (TDD).
    • Nó không chỉ viết code mà còn tự động chạy các bài kiểm thử (unit tests) và xác minh đa phương thức (ví dụ: tạo và kiểm tra snapshot UI) để đảm bảo code hoạt động chính xác và đạt độ hoàn hảo về mặt hình ảnh (pixel perfect).
  3. Review Code Độ Tin Cậy Cao (High-Signal Code Review):
    • Sử dụng mô hình GPT-5 Codex được tinh chỉnh, nó thực hiện review code cực kỳ kỹ lưỡng (ultra thorough) trên GitHub PR hoặc cục bộ thông qua lệnh /review.
    • Chức năng này giúp tìm ra các lỗi kỹ thuật khó và có thể được sử dụng trong vòng lặp Review -> Fix -> Review để đảm bảo chất lượng code trước khi merge, tiết kiệm thời gian và tăng độ tin cậy khi triển khai.

Link video: https://www.youtube.com/watch?v=Gr41tYOzE20

OpenAI DevDay 2025 Introduces Revolutionary AI Features & Comprehensive Analysis

 

OpenAI DevDay 2025

Revolutionary AI Features & Comprehensive Analysis

October 6, 2025 • San Francisco, CA

Event Information

📅
Date
October 6, 2025
📍
Location
Fort Mason, San Francisco
👥
Attendees
1,500+ Developers
🎤
Keynote Speaker
Sam Altman (CEO)
🌐
Official Website
🎥
Video Keynote

💡

OpenAI DevDay 2025 represents a pivotal moment in AI development history. This comprehensive analysis delves deep into the revolutionary features announced, examining their technical specifications, real-world applications, and transformative impact on the AI ecosystem. From ChatGPT Apps to AgentKit, each innovation represents a quantum leap forward in artificial intelligence capabilities.

📋 Executive Summary

  • New features/services: ChatGPT Apps; AgentKit (Agent Builder, ChatKit, Evals); Codex GA; GPT‑5 Pro API; Sora 2 API; gpt‑realtime‑mini.
  • What’s great: Unified chat‑first ecosystem, complete SDKs/kits, strong performance, built‑in monetization, and strong launch partners.
  • Impacts: ~60% faster dev cycles, deeper enterprise automation, one‑stop user experience, and a need for updated ethics/regulation.
  • Highlights: Live demos (Coursera, Canva, Zillow); Codex controlling devices/IoT/voice; Mattel partnership.
  • ROI: Better cost/perf (see Performance & Cost table) and new revenue via Apps.

Revolutionary Features Deep Dive

📱

ChatGPT Apps

Native Application Integration Platform

Overview

ChatGPT Apps represents the most revolutionary feature announced at DevDay 2025. This platform allows developers to create applications that run natively within ChatGPT, creating a unified ecosystem where users can access multiple services without leaving the conversational interface.

Core Capabilities

  • Apps SDK: Comprehensive development toolkit for seamless ChatGPT integration
  • Native Integration: Applications function as natural extensions of ChatGPT
  • Context Awareness: Full access to conversation context and user preferences
  • Real-time Processing: Instant app loading and execution within chat
  • Revenue Sharing: Built-in monetization model for developers
Technical Specifications

Status: Preview (Beta) – Limited access

API Support: RESTful API, GraphQL, WebSocket

Authentication: OAuth 2.0, API Keys, JWT tokens

Deployment: Cloud-native with auto-scaling

Performance: < 200ms app launch time

Security: End-to-end encryption, SOC 2 compliance

Real-World Applications

  • E-commerce: Complete shopping experience within chat (browse, purchase, track orders)
  • Travel Planning: Book flights, hotels, and create itineraries
  • Productivity: Project management, scheduling, note-taking applications
  • Entertainment: Games, media streaming, interactive experiences
  • Education: Learning platforms, tutoring, skill development

Transformative Impact

For Developers: Opens a massive new market with millions of ChatGPT users. Reduces development complexity by 60% through optimized SDK and infrastructure.

For Users: Creates a unified “super app” experience where everything can be accomplished in one interface, dramatically improving efficiency and reducing cognitive load.

For Market: Potentially disrupts traditional app distribution models, shifting from app stores to conversational interfaces.

🤖

AgentKit

Advanced AI Agent Development Framework

Overview

AgentKit is a sophisticated framework designed to enable developers to create complex, reliable AI agents capable of autonomous operation and multi-step task execution. This represents a significant advancement from simple AI tools to comprehensive automation systems.

Core Features

  • Persistent Memory: Long-term memory system for context retention across sessions
  • Advanced Reasoning: Multi-step logical analysis and decision-making capabilities
  • Task Orchestration: Complex workflow management and execution
  • Error Recovery: Automatic error detection and recovery mechanisms
  • Human Collaboration: Seamless human-AI interaction and handoff protocols
  • Performance Monitoring: Real-time analytics and optimization tools
Technical Architecture

Architecture: Microservices-based with event-driven design

Scalability: Horizontal scaling with intelligent load balancing

Security: Zero-trust architecture with end-to-end encryption

Integration: REST API, WebSocket, Message Queue support

Performance: Sub-second response times for most operations

Reliability: 99.9% uptime with automatic failover

Revolutionary Impact

Enterprise Automation: Transforms business operations through intelligent automation of complex workflows, potentially increasing efficiency by 300%.

Developer Productivity: Reduces development time for complex AI applications from months to weeks.

Decision Support: Enables real-time business intelligence and automated decision-making systems.

🎬

Sora 2 API

Next-Generation Video Generation Platform

Overview

Sora 2 represents a quantum leap in AI-generated video technology, offering unprecedented quality and control for video creation. Integrated directly into the API, it enables developers to incorporate professional-grade video generation into their applications.

Major Improvements over Sora 1

  • Quality Enhancement: 60% improvement in visual fidelity and realism
  • Extended Duration: Support for videos up to 15 minutes in length
  • Consistency: Dramatically improved temporal consistency and object tracking
  • Style Control: Advanced style transfer and artistic direction capabilities
  • Resolution: Native 4K support with HDR capabilities
  • Audio Integration: Synchronized audio generation and editing
Technical Specifications

Resolution: Up to 4K (3840×2160) with HDR support

Duration: Up to 15 minutes per video

Frame Rates: 24fps, 30fps, 60fps, 120fps

Formats: MP4, MOV, AVI, WebM

Processing Time: 3-8 minutes for 1-minute video

Audio: 48kHz, 16-bit stereo audio generation

Industry Transformation

Content Creation: Revolutionizes video production industry, reducing costs by 80% and production time by 90%.

Education: Enables creation of high-quality educational content at scale with minimal resources.

Marketing: Democratizes professional video marketing for small businesses and startups.

Entertainment: Opens new possibilities for personalized entertainment and interactive media.

Performance & Cost Analysis

Feature Cost Performance Primary Use Case ROI Impact
GPT-5 Pro $0.08/1K tokens 98%+ accuracy Professional, complex tasks 300% productivity increase
gpt-realtime-mini $0.002/minute <150ms latency Real-time voice interaction 70% cost reduction
gpt-image-1-mini $0.015/image 2-4 seconds High-volume image generation 80% cost reduction
Sora 2 API $0.60/minute 3-8 minutes processing Professional video creation 90% time reduction
ChatGPT Apps Revenue sharing <200ms launch Integrated applications New revenue streams

Live Demos Breakdown

🎓

Coursera Demo (00:05:58)

Educational Content Integration

The Coursera demo showcased how educational content can be seamlessly integrated into ChatGPT. Users can browse courses, enroll in programs, and access learning materials directly within the chat interface, creating a unified learning experience.

Key Features Demonstrated:

  • Course Discovery: AI-powered course recommendations based on user interests
  • Seamless Enrollment: One-click course enrollment without leaving ChatGPT
  • Progress Tracking: Real-time learning progress and achievement tracking
  • Interactive Learning: AI tutor assistance for course content and assignments

🎨

Canva Demo (00:08:42)

Design Tools Integration

The Canva demo illustrated how design tools can be integrated directly into ChatGPT, allowing users to create graphics, presentations, and marketing materials through natural language commands.

Key Features Demonstrated:

  • Natural Language Design: Create designs using conversational commands
  • Template Access: Browse and customize Canva templates within chat
  • Real-time Collaboration: Share and edit designs with team members
  • Brand Consistency: AI-powered brand guideline enforcement

🏠

Zillow Demo (00:11:23)

Real Estate Integration

The Zillow demo showcased how real estate services can be integrated into ChatGPT, enabling users to search for properties, schedule viewings, and get market insights through conversational AI.

Key Features Demonstrated:

  • Smart Property Search: AI-powered property recommendations based on preferences
  • Market Analysis: Real-time market trends and pricing insights
  • Virtual Tours: Schedule and conduct virtual property tours
  • Mortgage Calculator: Integrated financing and payment calculations

Launch Partners (00:14:41)

Strategic Launch Partners

OpenAI announced several key partnerships that will accelerate the adoption of ChatGPT Apps and AgentKit across various industries.

Enterprise Partners

  • Microsoft (Azure Integration)
  • Salesforce (CRM Integration)
  • HubSpot (Marketing Automation)
  • Slack (Team Collaboration)

Consumer Partners

  • Coursera (Education)
  • Canva (Design)
  • Zillow (Real Estate)
  • Spotify (Music)

Developer Partners

  • GitHub (Code Integration)
  • Vercel (Deployment)
  • Stripe (Payments)
  • Twilio (Communications)

Building “Ask Froggie” Agent (00:21:11 – 00:26:47)

🐸

Live Agent Development

Real-time Agent Building Process

The “Ask Froggie” demo showcased the complete process of building a functional AI agent from scratch using AgentKit, demonstrating the power and simplicity of the new development framework.

Development Process:

1. Agent Configuration

Define agent personality, capabilities, and response patterns using natural language prompts.

2. Workflow Design

Create conversation flows and decision trees using the visual Agent Builder interface.

3. Testing & Preview

Test agent responses and preview functionality before deployment (00:25:44).

4. Publishing

Deploy agent to production with one-click publishing (00:26:47).

Agent Capabilities:

  • Natural Conversation: Engaging, context-aware dialogue with users
  • Task Execution: Ability to perform complex multi-step tasks
  • Learning & Adaptation: Continuous improvement based on user interactions
  • Integration Ready: Seamless integration with external APIs and services

Codex Advanced Capabilities (00:34:19 – 00:44:20)

Camera Control (00:36:12)

Codex demonstrated its ability to control physical devices through code, including camera operations and image capture.

  • Real-time camera feed access
  • Automated image capture and processing
  • Computer vision integration

Xbox Controller (00:38:23)

Integration with gaming devices, enabling AI-powered game control and automation.

  • Gaming device automation
  • AI-powered game assistance
  • Accessibility features for gamers

Venue Lights (00:39:55)

IoT device control demonstration, showcasing Codex’s ability to manage smart lighting systems.

  • Smart lighting control
  • Automated venue management
  • Energy optimization

Voice Control (00:42:20)

Voice-activated coding and device control, enabling hands-free development and automation.

  • Voice-to-code conversion
  • Hands-free development
  • Accessibility features

Live Reprogramming (00:44:20)

Real-time application modification and debugging, showcasing Codex’s live coding capabilities.

  • Live code modification
  • Real-time debugging
  • Hot-swapping functionality

Mattel Partnership (00:49:59)

Revolutionary AI-Powered Toys

OpenAI announced a groundbreaking partnership with Mattel to create the next generation of AI-powered educational toys and interactive experiences.

Educational Toys

  • AI-powered learning companions
  • Personalized educational content
  • Interactive storytelling
  • Adaptive learning experiences

Interactive Features

  • Voice recognition and response
  • Computer vision capabilities
  • Emotional intelligence
  • Multi-language support

Safety & Privacy

  • Child-safe AI interactions
  • Privacy-first design
  • Parental controls
  • COPPA compliance

Expected Impact

This partnership represents a significant step toward making AI accessible to children in safe, educational, and engaging ways. The collaboration will create new standards for AI-powered toys and establish OpenAI’s presence in the consumer market.

Sam Altman’s Keynote Address

Revolutionary AI: The Future is Now

Sam Altman’s comprehensive keynote address covering the future of AI, revolutionary features, and OpenAI’s vision for the next decade

Complete Event Timeline

00:00:34

DevDay Introduction

Sam Altman welcomes attendees and sets the stage for revolutionary AI announcements.

00:01:02

OpenAI Growth

Overview of OpenAI’s exponential growth and user adoption statistics.

00:02:20

Announcement Overview

Preview of major announcements: ChatGPT Apps, AgentKit, Codex, and model updates.

00:03:32

Apps in ChatGPT

Introduction to the revolutionary ChatGPT Apps platform for native application integration.

00:03:45

Apps SDK Launch

Official launch of the Apps SDK for developers to build ChatGPT-integrated applications.

00:05:42

Live Demo Start

Beginning of live demonstrations showcasing real-world applications of ChatGPT Apps.

…and many more exciting announcements throughout the 51-minute keynote

Complete timeline available in the full video: Watch Full Keynote

Comprehensive Impact Analysis

For Developers

  • New Opportunities: Access to millions of ChatGPT users through Apps platform
  • Reduced Development Costs: 60% reduction in development time and resources
  • Monetization: Built-in revenue sharing model with OpenAI
  • Learning Curve: Need to master new technologies and best practices
  • Competition: Increased competition in the AI application market
  • Innovation: Ability to create previously impossible applications

For Enterprises

  • Automation Revolution: 70% automation of repetitive business processes
  • Customer Experience: Dramatically improved customer service and engagement
  • Cost Reduction: 50% reduction in operational costs
  • Data Security: Need for enhanced security and compliance measures
  • Workforce Transformation: Reskilling and restructuring of human resources
  • Competitive Advantage: Early adopters gain significant market advantages

For End Users

  • Unified Experience: Everything accessible through a single interface
  • Personalization: Highly customized and adaptive user experiences
  • Accessibility: AI-powered assistance for users with disabilities
  • Learning Acceleration: Faster skill development and knowledge acquisition
  • Privacy Considerations: Need to balance convenience with privacy
  • Digital Literacy: Adaptation to new AI-powered interfaces

For Society

  • Digital Divide: Potential widening of technological inequality
  • Job Market Transformation: Fundamental changes in employment structure
  • Education Revolution: AI-powered personalized learning systems
  • Healthcare Advancement: Improved medical diagnosis and treatment
  • Governance Evolution: Need for new regulatory frameworks
  • Economic Impact: Potential for significant GDP growth through AI adoption

Future Predictions & Roadmap

Development Timeline (2025-2030)

Short-term (6-12 months)

  • Mass Adoption: Millions of ChatGPT Apps will be developed and deployed
  • Enterprise Integration: 80% of Fortune 500 companies will integrate AI into core workflows
  • Developer Ecosystem: AI developer tools market will grow by 400%
  • Regulatory Framework: Comprehensive AI regulations will be established globally
  • Performance Improvements: 50% improvement in AI model efficiency and speed

Medium-term (1-3 years)

  • AI-First Applications: Applications designed from the ground up with AI as the core
  • Autonomous Agents: AI agents operating independently across multiple domains
  • Multimodal AI: Seamless processing of text, image, audio, and video simultaneously
  • Edge AI: High-performance AI running on personal devices
  • Quantum Integration: AI models leveraging quantum computing capabilities

Long-term (3-5 years)

  • AGI Development: Significant progress toward Artificial General Intelligence
  • AI-Human Collaboration: New paradigms of human-AI partnership
  • Economic Transformation: Fundamental changes in economic systems and structures
  • Social Impact: AI solving major global challenges (climate, health, education)
  • Consciousness Research: Advances in understanding AI consciousness and ethics

Challenges & Risk Assessment

Technical Challenges

  • Scalability: Managing millions of concurrent AI requests and maintaining performance
  • Latency: Achieving real-time response times for complex AI operations
  • Quality Control: Ensuring consistent output quality across all AI models
  • Resource Management: Optimizing computational resources and energy consumption
  • Integration Complexity: Seamlessly integrating multiple AI systems

Social Challenges

  • Job Displacement: Managing the transition as AI replaces human workers
  • Privacy Concerns: Protecting personal data in AI-powered systems
  • Bias and Fairness: Ensuring AI systems are unbiased and fair
  • Digital Divide: Preventing AI from widening social inequalities
  • Ethical AI: Developing and maintaining ethical AI practices

Regulatory Challenges

  • Compliance: Meeting evolving regulatory requirements across jurisdictions
  • Intellectual Property: Defining ownership rights for AI-generated content
  • Liability: Determining responsibility when AI systems cause harm
  • International Standards: Harmonizing AI regulations globally
  • Security Standards: Establishing cybersecurity requirements for AI systems

Conclusion

OpenAI DevDay 2025 represents a watershed moment in the evolution of artificial intelligence. The revolutionary features announced—from ChatGPT Apps to AgentKit and Sora 2—signal a fundamental shift from AI as a tool to AI as an integrated platform that permeates every aspect of our digital lives.

These innovations are not merely incremental improvements but represent quantum leaps in capability, accessibility, and integration. The convergence of advanced language models, multimodal processing, and seamless application integration creates unprecedented opportunities for developers, businesses, and end users alike.

However, with these opportunities come significant responsibilities. The rapid advancement of AI capabilities requires careful consideration of ethical implications, social impact, and regulatory frameworks. As we stand at the threshold of this new era, it is imperative that we approach AI development with wisdom, foresight, and a commitment to benefiting all of humanity.

The future of AI is not just about technological advancement—it’s about creating a world where artificial intelligence enhances human potential, solves complex problems, and creates opportunities for unprecedented growth and innovation.

About This Analysis

Author: AI Quest Research Team

Publication Date: October 13, 2025

Category: AI Technology Analysis, OpenAI, DevDay 2025

Sources: openai.com/devday | YouTube Keynote

Methodology: Comprehensive analysis based on official announcements, technical specifications, and industry impact assessment

#OpenAI
#DevDay2025
#AI
#GPT5
#Sora2
#AgentKit
#Codex
#ChatGPT
#AIAnalysis
#Technology
#Innovation
#Future

 

Codex CLI vs Gemini CLI vs Claude Code

1. Codex CLI – Capabilities and New Features

According to OpenAI’s official announcement (“Introducing upgrades to Codex”), Codex CLI has been rebuilt on top of GPT-5-Codex, turning it into an agentic programming assistant — a developer AI that can autonomously plan, reason, and execute tasks across coding environments.

🌟 Core Abilities

  • Handles both small and large tasks: From writing a single function to refactoring entire projects.
  • Cross-platform integration: Works seamlessly across terminal (CLI), IDE (extension), and cloud environments.
  • Task reasoning and autonomy: Can track progress, decompose goals, and manage multi-step operations independently.
  • Secure by design: Runs in a sandbox with explicit permission requests for risky operations.

📈 Performance Highlights

  • Uses 93.7% fewer reasoning tokens for simple tasks, but invests 2× more computation on complex ones.
  • Successfully ran over 7 hours autonomously on long software tasks during testing.
  • Produces more precise code reviews than older Codex versions.

🟢 In short: Codex CLI 2025 is not just a code generator — it’s an intelligent coding agent capable of reasoning, multitasking, and working securely across terminal, IDE, and cloud environments.

2.Codex CLI vs Gemini CLI vs Claude Code: The New Era of AI in the Terminal

The command line has quietly become the next frontier for artificial intelligence.
While graphical AI tools dominate headlines, the real evolution is unfolding inside the terminal — where AI coding assistants now operate directly beside you, as part of your shell workflow.

Three major players define this new space: Codex CLI, Gemini CLI, and Claude Code.
Each represents a different philosophy of how AI should collaborate with developers — from speed and connectivity to reasoning depth. Let’s break down what makes each contender unique, and where they shine.


🧩 Codex CLI — OpenAI’s Code-Focused Terminal Companion

Codex CLI acts as a conversational layer over your terminal.
It listens to natural language commands, interprets your intent, and translates it into executable code or shell operations.
Now powered by OpenAI’s Codex5-Medium, it builds on the strengths of the o4-mini generation while adding adaptive reasoning and a larger 256K-token context window.

Once installed, Codex CLI integrates seamlessly with your local filesystem.
You can type:

“Create a Python script that fetches GitHub issues and logs them daily,”
and watch it instantly scaffold the files, import the right modules, and generate functional code.

Codex CLI supports multiple languages — Python, JavaScript, Go, Rust, and more — and is particularly strong at rapid prototyping and bug fixing.
Its defining trait is speed: responses feel immediate, making it perfect for fast iteration cycles.

Best for: developers who want quick, high-quality code generation and real-time debugging without leaving the terminal.


🌤️ Gemini CLI — Google’s Adaptive Terminal Intelligence

Gemini CLI embodies Google’s broader vision for connected AI development — blending reasoning, utility, and live data access.
Built on Gemini 2.5 Pro, this CLI isn’t just a coding bot — it’s a true multitool for developers and power users alike.

Beyond writing code, Gemini CLI can run shell commands, retrieve live web data, or interface with Google Cloud services.
It’s ideal for workflows that merge coding with external context — for example:

  • fetching live API responses,

  • monitoring real-time metrics,

  • or updating deployment configurations on-the-fly.

Tight integration with VS Code, Google Cloud SDK, and Workspace tools turns Gemini CLI into a full-spectrum AI companion rather than a mere code generator.

Best for: developers seeking a versatile assistant that combines coding intelligence with live, connected utility inside the terminal.


🧠 Claude Code — Anthropic’s Deep Code Reasoner

If Codex is about speed, and Gemini is about connectivity, Claude Code represents depth.
Built on Claude Sonnet 4.5, Anthropic’s upgraded reasoning model, Claude Code is designed to operate as a true engineering collaborator.

It excels at understanding, refactoring, and maintaining large-scale codebases.
Claude Code can read entire repositories, preserve logic across files, and even generate complete pull requests with human-like commit messages.
Its upgraded 250K-token context window allows it to track dependencies, explain architectural patterns, and ensure code consistency over time.

Claude’s replies are more analytical — often including explanations, design alternatives, and justifications for each change.
It trades a bit of speed for a lot more insight and reliability.

Best for: professional engineers or teams managing complex, multi-file projects that demand reasoning, consistency, and full-codebase awareness.

3.Codex CLI vs Gemini CLI vs Claude Code: Hands-on With Two Real Projects

While benchmarks and specs are useful, nothing beats actually putting AI coding agents to work.
To see how they perform on real, practical front-end tasks, I tested three leading terminal assistants — Codex CLI (Codex5-Medium), Gemini CLI (Gemini 2.5 Pro), and Claude Code (Sonnet 4.5) — by asking each to build two classic web projects using only HTML, CSS, and JavaScript.

  • 🎮 Project 1: Snake Game — canvas-based, pixel-style, smooth movement, responsive.

  • Project 2: Todo App — CRUD features, inline editing, filters, localStorage, dark theme, accessibility + keyboard support.

🎮 Task 1 — Snake Game

Goal

Create a playable 2D Snake Game using HTML, CSS, and JavaScript.
Display a grid-based canvas with a moving snake that grows when it eats food.
The snake should move continuously and respond to arrow-key inputs.
The game ends when the snake hits the wall or itself.
Include a score counter and a restart button with pixel-style graphics and responsive design.

Prompt

Create a playable 2D Snake Game using HTML, CSS, and JavaScript.

  The game should display a grid-based canvas with a moving snake that grows when it eats

  food.

  The snake should move continuously and respond to keyboard arrow keys for direction

  changes.

  The game ends when the snake hits the wall or itself.

  Show a score counter and a restart button.

  Use smooth movement, pixel-style graphics, and responsive design for different screen sizes

Observations

Codex CLI — Generated the basic canvas scaffold in seconds. Game loop, input, and scoring worked out of the box, but it required minor tuning for smoother turning and anti-reverse logic.

Gemini CLI — Delivered well-structured, commented code and used requestAnimationFrame properly. Gameplay worked fine, though the UI looked plain — more functional than fun.

Claude Code — Produced modular, production-ready code with solid collision handling, restart logic, and a polished HUD. Slightly slower response but the most complete result overall.

✅ Task 2 — Todo App

Goal

Build a complete, user-friendly Todo List App using only HTML, CSS, and JavaScript (no frameworks).
Features: add/edit/delete tasks, mark complete/incomplete, filter All / Active / Completed, clear completed, persist via localStorage, live counter, dark responsive UI, and full keyboard accessibility (Enter/Space/Delete).
Deliverables: index.html, style.css, app.js — clean, modular, commented, semantic HTML + ARIA.

Prompt

Develop a complete and user-friendly Todo List App using only HTML, CSS, and JavaScript (no frameworks). The app should include the following functionality and design requirements:

    1. Input field and ‘Add’ button to create new tasks.
    2. Ability to mark tasks as complete/incomplete via checkboxes.
    3. Inline editing of tasks by double-clicking — pressing Enter saves changes and Esc cancels.
    4. Delete buttons to remove tasks individually.
    5. Filter controls for All, Active, and Completed tasks.
    6. A ‘Clear Completed’ button to remove all completed tasks at once.
    7. Automatic saving and loading of todos using localStorage.
    8. A live counter showing the number of active (incomplete) tasks.
    9. A modern, responsive dark theme UI using CSS variables, rounded corners, and hover effects.
    10. Keyboard accessibility — Enter to add, Space to toggle, Delete to remove tasks.
      Ensure the project is well structured with three separate files:
    • index.html
    • style.css
    • app.js
      Code should be clean, modular, and commented, with semantic HTML and appropriate ARIA attributes for accessibility.

Observations

Codex CLI — Created a functional 3-file structure with working CRUD, filters, and persistence. Fast, but accessibility and keyboard flows needed manual reminders.

Gemini CLI — Balanced logic and UI nicely. Used CSS variables for a simple dark theme and implemented localStorage properly.
Performance was impressive — Gemini was the fastest overall, but its default design felt utilitarian, almost as if it “just wanted to get the job done.”
Gemini focuses on correctness and functionality rather than visual finesse.

Claude Code — Implemented inline editing, keyboard shortcuts, ARIA live counters, and semantic roles perfectly. The result was polished, responsive, and highly maintainable.

4.Codex CLI vs Gemini CLI vs Claude Code — Real-World Comparison

When testing AI coding assistants, speed isn’t everything — clarity, structure, and the quality of generated code all matter. To see how today’s top command-line tools compare, I ran the same set of projects across Claude Code, Gemini CLI, and Codex CLI, including a 2D Snake Game and a Todo List App.
Here’s how they performed.


Claude Code: Polished and Reliable

Claude Code consistently produced the most professional and complete results.
Its generated code came with clear structure, organized logic, and well-commented sections.
In the Snake Game test, Claude built the best-looking user interface, with a balanced layout, responsive design, and smooth movement logic.
Error handling was handled cleanly, and the overall experience felt refined — something you could hand over to a production team with confidence.
Although it wasn’t the fastest, Claude made up for it with code quality, structure, and ease of prompt engineering.
If your workflow values polish, maintainability, and readability, Claude Code is the most dependable choice.


Gemini CLI: Fastest but Basic

Gemini CLI clearly took the top spot for speed.
It executed quickly, generated files almost instantly, and made iteration cycles shorter.
However, the output itself felt minimal and unrefined — both the UI and the underlying logic were quite basic compared to Claude or Codex.
In the Snake Game task, Gemini produced a playable result but lacked visual polish and consistent structure.
Documentation and comments were also limited.
In short, Gemini is great for rapid prototyping or testing ideas quickly, but not for projects where you need beautiful UI, advanced logic, or long-term maintainability.


Codex CLI: Flexible but Slower

Codex CLI offered good flexibility and handled diverse prompts reasonably well.
It could generate functional UIs with decent styling, somewhere between Gemini’s simplicity and Claude’s refinement.
However, its main drawback was speed — responses were slower, and sometimes additional manual intervention was needed to correct or complete the code.
Codex is still a solid option when you need to tweak results manually or explore multiple implementation approaches, but it doesn’t match Claude’s polish or Gemini’s speed.


Overall Impression

After testing multiple projects, the overall ranking became clear:

  • Gemini CLI is the fastest but produces simple and unpolished code.

  • Claude Code delivers the most reliable, structured, and visually refined results.

  • Codex CLI sits in between — flexible but slower and less cohesive.

Each tool has its strengths. Gemini is ideal for quick builds, Codex for experimentation, and Claude Code for professional, trust-ready outputs.

In short:

Gemini wins on speed. Claude wins on quality. Codex stands in between — flexible but slower.