Lộ Trình Học Tập Tối Ưu cho Quản Lý Sản Phẩm AI

Bài viết gốc: “The Ultimate AI PM Learning Roadmap” của Paweł Huryn

Mô tả: Một phiên bản mở rộng với hàng chục tài nguyên AI PM: định nghĩa, khóa học, hướng dẫn, báo cáo, công cụ và hướng dẫn từng bước

Chào mừng bạn đến với phân tích chi tiết về “The Ultimate AI PM Learning Roadmap” của Paweł Huryn. Trong bài viết này, chúng ta sẽ đi sâu vào từng phần của lộ trình học tập, đánh giá tính toàn diện và đề xuất các kỹ năng bổ sung cần thiết cho Quản lý Sản phẩm AI (AI PM).

1Các Khái Niệm Cơ Bản về AI

Paweł bắt đầu bằng việc giới thiệu về vai trò của AI Product Manager và sự khác biệt so với PM truyền thống. Đây là nền tảng quan trọng để hiểu rõ về lĩnh vực này.

Điểm chính:

  • Hiểu rõ sự khác biệt giữa PM truyền thống và AI PM
  • Nắm vững các khái niệm cơ bản về Machine Learning và Deep Learning
  • Hiểu về Transformers và Large Language Models (LLMs)
  • Nắm bắt kiến trúc và cách hoạt động của các mô hình AI

Tài nguyên miễn phí:

  • WTF is AI Product Manager – Giải thích vai trò AI PM
  • LLM Visualization – Hiểu cách hoạt động của LLM

Bắt đầu với việc hiểu AI Product Manager là gì. Tiếp theo, đối với hầu hết PM, việc đi sâu vào thống kê, Python hoặc loss functions không có ý nghĩa. Thay vào đó, bạn có thể tìm thấy các khái niệm quan trọng nhất ở đây: Introduction to AI Product Management: Neural Networks, Transformers, and LLMs.

[Tùy chọn] Nếu bạn muốn đi sâu hơn, tôi khuyên bạn nên kiểm tra một LLM visualization tương tác.

2Prompt Engineering

AI Product Management, Prompt Engineering Guides

Hướng dẫn Prompt Engineering cho AI Product Management

52% người Mỹ trưởng thành sử dụng LLMs. Nhưng rất ít người biết cách viết prompt tốt.

Paweł khuyên nên bắt đầu với các tài nguyên được tuyển chọn đặc biệt cho PMs:

Tài nguyên được đề xuất:

  • 14 Prompting Techniques Every PM Should Know – Kỹ thuật cơ bản
  • Top 9 High-ROI ChatGPT Use Cases for Product Managers
  • The Ultimate ChatGPT Prompts Library for Product Managers

Tài nguyên miễn phí khác (Tùy chọn):

  • Hướng dẫn:
    • GPT-5 Prompting Guide – insights độc đáo, đặc biệt cho coding agents
    • GPT-4.1 Prompting Guide – tập trung vào khả năng agentic
    • Anthropic Prompt Engineering – tài nguyên ưa thích của tác giả
    • Prompt Engineering by Google (Tùy chọn)
  • Phân tích tuyệt vời: System Prompt Analysis for Claude 4
  • Công cụ:
    • Anthropic Prompt Generator: Cải thiện hoặc tạo bất kỳ prompt nào
    • Anthropic Prompt Library: Prompts sẵn sàng sử dụng
  • Khóa học tương tác miễn phí: Prompt Engineering By Anthropic

3Fine-Tuning

AI Product Management, Fine Tuning

Quy trình Fine-tuning trong AI Product Management

Sử dụng các nền tảng này để thử nghiệm với tập dữ liệu đào tạo và xác thực cũng như các tham số như epochs. Không cần coding:

  • OpenAI Platform (bắt đầu từ đây, được yêu thích nhất)
  • Hugging Face AutoTrain
  • LLaMA-Factory (open source, cho phép đào tạo và fine-tune LLMs mã nguồn mở)

Thực hành: Bạn có thể thực hành fine tuning bằng cách làm theo hướng dẫn từng bước thực tế: The Ultimate Guide to Fine-Tuning for PMs

4RAG (Retrieval-Augmented Generation)

AI PM, RAG (Retrieval-Augmented Generation)

Kiến trúc RAG cho AI PM

RAG, theo định nghĩa, yêu cầu một nguồn dữ liệu cộng với một LLM. Và có hàng chục kiến trúc có thể.

Vì vậy, thay vì nghiên cứu các tên gọi nhân tạo, Paweł khuyên nên sử dụng các tài nguyên sau để học RAG trong thực tế:

  • A Guide to Context Engineering for PMs
  • How to Build a RAG Chatbot Without Coding: Một bài tập đơn giản từng bước
  • Three Essential Agentic RAG Architectures từ AI Agent Architectures
  • Interactive RAG simulator: https://rag.productcompass.pm/

5AI Agents & Agentic Workflows

AI Agents & Agentic Workflows Tools

Các công cụ cho AI Agents và Agentic Workflows

AI agents là chủ đề bạn có thể học tốt nhất bằng cách thực hành. Paweł thấy quá nhiều lời khuyên vô nghĩa từ những người chưa bao giờ xây dựng bất cứ thứ gì.

Công cụ ưa thích: n8n

Công cụ ưa thích của Paweł, cho phép bạn:

  • Tạo agentic workflows phức tạp và hệ thống multi-agent với giao diện kéo-thả
  • Dễ dàng tích hợp với hàng chục hệ thống (Google, Intercom, Jira, SQL, Notion, v.v.)
  • Tạo và điều phối AI agents có thể sử dụng công cụ và kết nối với bất kỳ máy chủ MCP nào

Bạn có thể bắt đầu với các hướng dẫn này:

  • The Ultimate Guide to AI Agents for PMs
  • AI Agent Architectures: The Ultimate Guide With n8n Examples
  • MCP for PMs: How To Automate Figma → Jira (Epics, Stories) in 10 Minutes (Claude Desktop)
  • J.A.R.V.I.S. for PMs: Automate Anything with n8n and Any MCP Server
  • I Copied the Multi-Agent Research System by Anthropic

[Tùy chọn] Các hướng dẫn và báo cáo miễn phí yêu thích:

  • Google Agent Companion: tập trung vào xây dựng AI agents sẵn sàng sản xuất
  • Anthropic Building Effective Agents
  • IBM Agentic Process Automation

6AI Prototyping & AI Building

Các công cụ AI Prototyping và Building

Paweł liệt kê nhiều công cụ, nhưng trong thực tế, Lovable, Supabase, GitHub và Netlify chiếm 80% những gì bạn cần. Bạn có thể thêm Stripe. Không cần coding.

Dưới đây là bốn hướng dẫn thực tế:

  • AI Prototyping: The Ultimate Guide For Product Managers
  • How to Quickly Build SaaS Products With AI (No Coding): Giới thiệu
  • A Complete Course: How to Build a Full-Stack App with Lovable (No-Coding)
  • Base44: A Brutally Simple Alternative to Lovable

[Tùy chọn] Nếu bạn muốn xây dựng và kiếm tiền từ sản phẩm của mình, ví dụ cho portfolio AI PM:

  • How to Build and Scale Full-Stack Apps in Lovable Without Breaking Production (Branching)
  • 17 Penetration & Performance Testing Prompts for Vibe Coders
  • The Rise of Vibe Engineering: Free Courses, Guides, and Resources
  • Lovable Just Killed Two Apps? Create Your Own SaaS Without Coding in 2 Days

Khi xây dựng, hãy tập trung vào giá trị, không phải sự cường điệu. Khách hàng không quan tâm liệu sản phẩm của bạn có sử dụng AI hay được xây dựng bằng AI.

7Foundational Models

AI Foundational Models

Các mô hình nền tảng AI

Khuyến nghị của Paweł (tháng 8/2025):

  • GPT-5 > GPT-4.1 > GPT-4.1-mini cho AI Agents
  • Claude Sonnet 4.5 cho coding
  • Gemini 2.5 Pro cho mọi thứ khác

Việc hiểu biết về các mô hình nền tảng này giúp AI PM đưa ra quyết định đúng đắn về việc chọn công nghệ phù hợp cho từng use case cụ thể.

8AI Evaluation Systems

Đánh giá là một phần quan trọng trong việc phát triển sản phẩm AI. Paweł nhấn mạnh tầm quan trọng của việc thiết lập hệ thống đánh giá hiệu quả.

Các yếu tố quan trọng:

  • MLOps và Model Monitoring: Theo dõi hiệu suất mô hình liên tục
  • A/B Testing: So sánh các phiên bản khác nhau của sản phẩm AI
  • Performance Tracking: Đo lường và tối ưu hóa hiệu suất
  • Model Drift Detection: Phát hiện sớm khi mô hình bị suy giảm

9AI Product Management Certification

AI Product Management Certification

Chứng nhận AI Product Management

Paweł đã tham gia chương trình cohort 6 tuần này vào mùa xuân 2024. Ông yêu thích việc networking và thực hành. Sau đó, ông tham gia cùng Miqdad với vai trò AI Build Labs Leader.

Chi tiết chương trình:

  • Thời gian: 6 tuần
  • Khóa tiếp theo: Bắt đầu ngày 18 tháng 10, 2025
  • Ưu đãi đặc biệt: Giảm $550 cho cộng đồng
  • Lợi ích: Networking và hands-on experience
  • Vai trò: AI Build Labs Leader

10AI Evals For Engineers & PMs

AI Evals for Engineers and PMs

Khóa học AI Evals cho Engineers và PMs

Paweł đã tham gia cohort đầu tiên cùng với 700+ AI engineers và PMs. Ông không nghi ngờ gì rằng mọi AI PM phải hiểu sâu về evals. Và ông đồng ý với Teresa Torres:

Teresa Torres Quote on AI Evals

Trích dẫn của Teresa Torres về AI Evaluation

Thông tin khóa học:

  • Cohort gần nhất bắt đầu ngày 10 tháng 10, 2025
  • Paweł sẽ cập nhật link khi có đợt đăng ký mới
  • Phương pháp của Teresa Torres được áp dụng
  • Các kỹ thuật đánh giá thực tế

11Visual Summary

Visual Summary of AI PM Learning Roadmap

Tóm tắt trực quan toàn bộ lộ trình học tập AI PM

Phân Tích và Đánh Giá

Sự Khác Biệt Giữa PM Truyền Thống và AI PM

Đặc điểm PM Truyền Thống AI PM
Phụ thuộc vào dữ liệu Ít phụ thuộc vào chất lượng dữ liệu cho chức năng cốt lõi Cần tập trung vào thu thập, làm sạch, gắn nhãn dữ liệu; dữ liệu là trung tâm giá trị sản phẩm
Phát triển lặp lại Lộ trình phát triển và thời gian dự kiến rõ ràng Yêu cầu phương pháp thử nghiệm, đào tạo và tinh chỉnh mô hình có thể dẫn đến kết quả biến đổi
Kỳ vọng người dùng Người dùng thường hiểu rõ cách hoạt động của sản phẩm Sản phẩm phức tạp, đòi hỏi xây dựng lòng tin bằng tính minh bạch và khả năng giải thích
Đạo đức & Công bằng Ít gặp phải các vấn đề đạo đức phức tạp Yêu cầu xem xét các vấn đề đạo đức như thiên vị thuật toán và tác động xã hội
Hiểu biết kỹ thuật Hiểu biết cơ bản về công nghệ là đủ Cần hiểu sâu về các mô hình AI, thuật toán, và cách chúng hoạt động

Đánh Giá Tính Toàn Diện

Điểm Mạnh:

  • Cấu trúc logic và rõ ràng: Lộ trình được trình bày có hệ thống, dễ theo dõi
  • Tập trung vào thực hành: Nhiều tài nguyên và hướng dẫn thực tế, đặc biệt là công cụ no-code
  • Cập nhật xu hướng: Đề cập đến công nghệ và khái niệm AI mới nhất
  • Kinh nghiệm thực tế: Chia sẻ từ trải nghiệm cá nhân của tác giả

Điểm Cần Bổ Sung:

  • Chiến lược kinh doanh AI: Cần thêm về cách xây dựng chiến lược sản phẩm AI từ góc độ kinh doanh
  • Stakeholder Management: Quản lý kỳ vọng và hợp tác với các bên liên quan
  • Quản lý rủi ro AI: Cần khung quản lý rủi ro rõ ràng
  • Tuân thủ pháp lý: Các quy định về AI đang phát triển nhanh
  • Lãnh đạo đa chức năng: Dẫn dắt nhóm đa chức năng là yếu tố then chốt

Kỹ Năng Bổ Sung Cần Thiết

  • AI Business Strategy: Xác định cơ hội kinh doanh, xây dựng business case và đo lường ROI
  • Technical Communication: Dịch các khái niệm kỹ thuật phức tạp thành ngôn ngữ dễ hiểu
  • Data Governance và Ethics: Quản lý dữ liệu, đảm bảo tính riêng tư và công bằng
  • AI Ethics Frameworks: Áp dụng các khung đạo đức AI để thiết kế sản phẩm có trách nhiệm

Khuyến Nghị Cuối Cùng

Lộ trình của Paweł Huryn là một điểm khởi đầu tuyệt vời. Để thực sự thành công trong vai trò AI PM, bạn cần:

  • Duy trì tư duy học tập liên tục: Lĩnh vực AI thay đổi rất nhanh
  • Trải nghiệm thực tế: Áp dụng kiến thức vào các dự án thực tế
  • Xây dựng mạng lưới: Kết nối với các chuyên gia AI và PM khác
  • Tiếp cận toàn diện: Kết hợp kiến thức kỹ thuật, kinh doanh, và đạo đức

Thanks for Reading!

Hy vọng lộ trình học tập này hữu ích cho bạn!

Thật tuyệt vời khi cùng nhau khám phá, học hỏi và phát triển.

Chúc bạn một tuần học tập hiệu quả!

© 2025 Phân tích Lộ Trình AI PM – Dựa trên bài viết của Paweł Huryn

 

OpenAI DevDay 2025 Introduces Revolutionary AI Features & Comprehensive Analysis

 

OpenAI DevDay 2025

Revolutionary AI Features & Comprehensive Analysis

October 6, 2025 • San Francisco, CA

Event Information

📅
Date
October 6, 2025
📍
Location
Fort Mason, San Francisco
👥
Attendees
1,500+ Developers
🎤
Keynote Speaker
Sam Altman (CEO)
🌐
Official Website
🎥
Video Keynote

💡

OpenAI DevDay 2025 represents a pivotal moment in AI development history. This comprehensive analysis delves deep into the revolutionary features announced, examining their technical specifications, real-world applications, and transformative impact on the AI ecosystem. From ChatGPT Apps to AgentKit, each innovation represents a quantum leap forward in artificial intelligence capabilities.

📋 Executive Summary

  • New features/services: ChatGPT Apps; AgentKit (Agent Builder, ChatKit, Evals); Codex GA; GPT‑5 Pro API; Sora 2 API; gpt‑realtime‑mini.
  • What’s great: Unified chat‑first ecosystem, complete SDKs/kits, strong performance, built‑in monetization, and strong launch partners.
  • Impacts: ~60% faster dev cycles, deeper enterprise automation, one‑stop user experience, and a need for updated ethics/regulation.
  • Highlights: Live demos (Coursera, Canva, Zillow); Codex controlling devices/IoT/voice; Mattel partnership.
  • ROI: Better cost/perf (see Performance & Cost table) and new revenue via Apps.

Revolutionary Features Deep Dive

📱

ChatGPT Apps

Native Application Integration Platform

Overview

ChatGPT Apps represents the most revolutionary feature announced at DevDay 2025. This platform allows developers to create applications that run natively within ChatGPT, creating a unified ecosystem where users can access multiple services without leaving the conversational interface.

Core Capabilities

  • Apps SDK: Comprehensive development toolkit for seamless ChatGPT integration
  • Native Integration: Applications function as natural extensions of ChatGPT
  • Context Awareness: Full access to conversation context and user preferences
  • Real-time Processing: Instant app loading and execution within chat
  • Revenue Sharing: Built-in monetization model for developers
Technical Specifications

Status: Preview (Beta) – Limited access

API Support: RESTful API, GraphQL, WebSocket

Authentication: OAuth 2.0, API Keys, JWT tokens

Deployment: Cloud-native with auto-scaling

Performance: < 200ms app launch time

Security: End-to-end encryption, SOC 2 compliance

Real-World Applications

  • E-commerce: Complete shopping experience within chat (browse, purchase, track orders)
  • Travel Planning: Book flights, hotels, and create itineraries
  • Productivity: Project management, scheduling, note-taking applications
  • Entertainment: Games, media streaming, interactive experiences
  • Education: Learning platforms, tutoring, skill development

Transformative Impact

For Developers: Opens a massive new market with millions of ChatGPT users. Reduces development complexity by 60% through optimized SDK and infrastructure.

For Users: Creates a unified “super app” experience where everything can be accomplished in one interface, dramatically improving efficiency and reducing cognitive load.

For Market: Potentially disrupts traditional app distribution models, shifting from app stores to conversational interfaces.

🤖

AgentKit

Advanced AI Agent Development Framework

Overview

AgentKit is a sophisticated framework designed to enable developers to create complex, reliable AI agents capable of autonomous operation and multi-step task execution. This represents a significant advancement from simple AI tools to comprehensive automation systems.

Core Features

  • Persistent Memory: Long-term memory system for context retention across sessions
  • Advanced Reasoning: Multi-step logical analysis and decision-making capabilities
  • Task Orchestration: Complex workflow management and execution
  • Error Recovery: Automatic error detection and recovery mechanisms
  • Human Collaboration: Seamless human-AI interaction and handoff protocols
  • Performance Monitoring: Real-time analytics and optimization tools
Technical Architecture

Architecture: Microservices-based with event-driven design

Scalability: Horizontal scaling with intelligent load balancing

Security: Zero-trust architecture with end-to-end encryption

Integration: REST API, WebSocket, Message Queue support

Performance: Sub-second response times for most operations

Reliability: 99.9% uptime with automatic failover

Revolutionary Impact

Enterprise Automation: Transforms business operations through intelligent automation of complex workflows, potentially increasing efficiency by 300%.

Developer Productivity: Reduces development time for complex AI applications from months to weeks.

Decision Support: Enables real-time business intelligence and automated decision-making systems.

🎬

Sora 2 API

Next-Generation Video Generation Platform

Overview

Sora 2 represents a quantum leap in AI-generated video technology, offering unprecedented quality and control for video creation. Integrated directly into the API, it enables developers to incorporate professional-grade video generation into their applications.

Major Improvements over Sora 1

  • Quality Enhancement: 60% improvement in visual fidelity and realism
  • Extended Duration: Support for videos up to 15 minutes in length
  • Consistency: Dramatically improved temporal consistency and object tracking
  • Style Control: Advanced style transfer and artistic direction capabilities
  • Resolution: Native 4K support with HDR capabilities
  • Audio Integration: Synchronized audio generation and editing
Technical Specifications

Resolution: Up to 4K (3840×2160) with HDR support

Duration: Up to 15 minutes per video

Frame Rates: 24fps, 30fps, 60fps, 120fps

Formats: MP4, MOV, AVI, WebM

Processing Time: 3-8 minutes for 1-minute video

Audio: 48kHz, 16-bit stereo audio generation

Industry Transformation

Content Creation: Revolutionizes video production industry, reducing costs by 80% and production time by 90%.

Education: Enables creation of high-quality educational content at scale with minimal resources.

Marketing: Democratizes professional video marketing for small businesses and startups.

Entertainment: Opens new possibilities for personalized entertainment and interactive media.

Performance & Cost Analysis

Feature Cost Performance Primary Use Case ROI Impact
GPT-5 Pro $0.08/1K tokens 98%+ accuracy Professional, complex tasks 300% productivity increase
gpt-realtime-mini $0.002/minute <150ms latency Real-time voice interaction 70% cost reduction
gpt-image-1-mini $0.015/image 2-4 seconds High-volume image generation 80% cost reduction
Sora 2 API $0.60/minute 3-8 minutes processing Professional video creation 90% time reduction
ChatGPT Apps Revenue sharing <200ms launch Integrated applications New revenue streams

Live Demos Breakdown

🎓

Coursera Demo (00:05:58)

Educational Content Integration

The Coursera demo showcased how educational content can be seamlessly integrated into ChatGPT. Users can browse courses, enroll in programs, and access learning materials directly within the chat interface, creating a unified learning experience.

Key Features Demonstrated:

  • Course Discovery: AI-powered course recommendations based on user interests
  • Seamless Enrollment: One-click course enrollment without leaving ChatGPT
  • Progress Tracking: Real-time learning progress and achievement tracking
  • Interactive Learning: AI tutor assistance for course content and assignments

🎨

Canva Demo (00:08:42)

Design Tools Integration

The Canva demo illustrated how design tools can be integrated directly into ChatGPT, allowing users to create graphics, presentations, and marketing materials through natural language commands.

Key Features Demonstrated:

  • Natural Language Design: Create designs using conversational commands
  • Template Access: Browse and customize Canva templates within chat
  • Real-time Collaboration: Share and edit designs with team members
  • Brand Consistency: AI-powered brand guideline enforcement

🏠

Zillow Demo (00:11:23)

Real Estate Integration

The Zillow demo showcased how real estate services can be integrated into ChatGPT, enabling users to search for properties, schedule viewings, and get market insights through conversational AI.

Key Features Demonstrated:

  • Smart Property Search: AI-powered property recommendations based on preferences
  • Market Analysis: Real-time market trends and pricing insights
  • Virtual Tours: Schedule and conduct virtual property tours
  • Mortgage Calculator: Integrated financing and payment calculations

Launch Partners (00:14:41)

Strategic Launch Partners

OpenAI announced several key partnerships that will accelerate the adoption of ChatGPT Apps and AgentKit across various industries.

Enterprise Partners

  • Microsoft (Azure Integration)
  • Salesforce (CRM Integration)
  • HubSpot (Marketing Automation)
  • Slack (Team Collaboration)

Consumer Partners

  • Coursera (Education)
  • Canva (Design)
  • Zillow (Real Estate)
  • Spotify (Music)

Developer Partners

  • GitHub (Code Integration)
  • Vercel (Deployment)
  • Stripe (Payments)
  • Twilio (Communications)

Building “Ask Froggie” Agent (00:21:11 – 00:26:47)

🐸

Live Agent Development

Real-time Agent Building Process

The “Ask Froggie” demo showcased the complete process of building a functional AI agent from scratch using AgentKit, demonstrating the power and simplicity of the new development framework.

Development Process:

1. Agent Configuration

Define agent personality, capabilities, and response patterns using natural language prompts.

2. Workflow Design

Create conversation flows and decision trees using the visual Agent Builder interface.

3. Testing & Preview

Test agent responses and preview functionality before deployment (00:25:44).

4. Publishing

Deploy agent to production with one-click publishing (00:26:47).

Agent Capabilities:

  • Natural Conversation: Engaging, context-aware dialogue with users
  • Task Execution: Ability to perform complex multi-step tasks
  • Learning & Adaptation: Continuous improvement based on user interactions
  • Integration Ready: Seamless integration with external APIs and services

Codex Advanced Capabilities (00:34:19 – 00:44:20)

Camera Control (00:36:12)

Codex demonstrated its ability to control physical devices through code, including camera operations and image capture.

  • Real-time camera feed access
  • Automated image capture and processing
  • Computer vision integration

Xbox Controller (00:38:23)

Integration with gaming devices, enabling AI-powered game control and automation.

  • Gaming device automation
  • AI-powered game assistance
  • Accessibility features for gamers

Venue Lights (00:39:55)

IoT device control demonstration, showcasing Codex’s ability to manage smart lighting systems.

  • Smart lighting control
  • Automated venue management
  • Energy optimization

Voice Control (00:42:20)

Voice-activated coding and device control, enabling hands-free development and automation.

  • Voice-to-code conversion
  • Hands-free development
  • Accessibility features

Live Reprogramming (00:44:20)

Real-time application modification and debugging, showcasing Codex’s live coding capabilities.

  • Live code modification
  • Real-time debugging
  • Hot-swapping functionality

Mattel Partnership (00:49:59)

Revolutionary AI-Powered Toys

OpenAI announced a groundbreaking partnership with Mattel to create the next generation of AI-powered educational toys and interactive experiences.

Educational Toys

  • AI-powered learning companions
  • Personalized educational content
  • Interactive storytelling
  • Adaptive learning experiences

Interactive Features

  • Voice recognition and response
  • Computer vision capabilities
  • Emotional intelligence
  • Multi-language support

Safety & Privacy

  • Child-safe AI interactions
  • Privacy-first design
  • Parental controls
  • COPPA compliance

Expected Impact

This partnership represents a significant step toward making AI accessible to children in safe, educational, and engaging ways. The collaboration will create new standards for AI-powered toys and establish OpenAI’s presence in the consumer market.

Sam Altman’s Keynote Address

Revolutionary AI: The Future is Now

Sam Altman’s comprehensive keynote address covering the future of AI, revolutionary features, and OpenAI’s vision for the next decade

Complete Event Timeline

00:00:34

DevDay Introduction

Sam Altman welcomes attendees and sets the stage for revolutionary AI announcements.

00:01:02

OpenAI Growth

Overview of OpenAI’s exponential growth and user adoption statistics.

00:02:20

Announcement Overview

Preview of major announcements: ChatGPT Apps, AgentKit, Codex, and model updates.

00:03:32

Apps in ChatGPT

Introduction to the revolutionary ChatGPT Apps platform for native application integration.

00:03:45

Apps SDK Launch

Official launch of the Apps SDK for developers to build ChatGPT-integrated applications.

00:05:42

Live Demo Start

Beginning of live demonstrations showcasing real-world applications of ChatGPT Apps.

…and many more exciting announcements throughout the 51-minute keynote

Complete timeline available in the full video: Watch Full Keynote

Comprehensive Impact Analysis

For Developers

  • New Opportunities: Access to millions of ChatGPT users through Apps platform
  • Reduced Development Costs: 60% reduction in development time and resources
  • Monetization: Built-in revenue sharing model with OpenAI
  • Learning Curve: Need to master new technologies and best practices
  • Competition: Increased competition in the AI application market
  • Innovation: Ability to create previously impossible applications

For Enterprises

  • Automation Revolution: 70% automation of repetitive business processes
  • Customer Experience: Dramatically improved customer service and engagement
  • Cost Reduction: 50% reduction in operational costs
  • Data Security: Need for enhanced security and compliance measures
  • Workforce Transformation: Reskilling and restructuring of human resources
  • Competitive Advantage: Early adopters gain significant market advantages

For End Users

  • Unified Experience: Everything accessible through a single interface
  • Personalization: Highly customized and adaptive user experiences
  • Accessibility: AI-powered assistance for users with disabilities
  • Learning Acceleration: Faster skill development and knowledge acquisition
  • Privacy Considerations: Need to balance convenience with privacy
  • Digital Literacy: Adaptation to new AI-powered interfaces

For Society

  • Digital Divide: Potential widening of technological inequality
  • Job Market Transformation: Fundamental changes in employment structure
  • Education Revolution: AI-powered personalized learning systems
  • Healthcare Advancement: Improved medical diagnosis and treatment
  • Governance Evolution: Need for new regulatory frameworks
  • Economic Impact: Potential for significant GDP growth through AI adoption

Future Predictions & Roadmap

Development Timeline (2025-2030)

Short-term (6-12 months)

  • Mass Adoption: Millions of ChatGPT Apps will be developed and deployed
  • Enterprise Integration: 80% of Fortune 500 companies will integrate AI into core workflows
  • Developer Ecosystem: AI developer tools market will grow by 400%
  • Regulatory Framework: Comprehensive AI regulations will be established globally
  • Performance Improvements: 50% improvement in AI model efficiency and speed

Medium-term (1-3 years)

  • AI-First Applications: Applications designed from the ground up with AI as the core
  • Autonomous Agents: AI agents operating independently across multiple domains
  • Multimodal AI: Seamless processing of text, image, audio, and video simultaneously
  • Edge AI: High-performance AI running on personal devices
  • Quantum Integration: AI models leveraging quantum computing capabilities

Long-term (3-5 years)

  • AGI Development: Significant progress toward Artificial General Intelligence
  • AI-Human Collaboration: New paradigms of human-AI partnership
  • Economic Transformation: Fundamental changes in economic systems and structures
  • Social Impact: AI solving major global challenges (climate, health, education)
  • Consciousness Research: Advances in understanding AI consciousness and ethics

Challenges & Risk Assessment

Technical Challenges

  • Scalability: Managing millions of concurrent AI requests and maintaining performance
  • Latency: Achieving real-time response times for complex AI operations
  • Quality Control: Ensuring consistent output quality across all AI models
  • Resource Management: Optimizing computational resources and energy consumption
  • Integration Complexity: Seamlessly integrating multiple AI systems

Social Challenges

  • Job Displacement: Managing the transition as AI replaces human workers
  • Privacy Concerns: Protecting personal data in AI-powered systems
  • Bias and Fairness: Ensuring AI systems are unbiased and fair
  • Digital Divide: Preventing AI from widening social inequalities
  • Ethical AI: Developing and maintaining ethical AI practices

Regulatory Challenges

  • Compliance: Meeting evolving regulatory requirements across jurisdictions
  • Intellectual Property: Defining ownership rights for AI-generated content
  • Liability: Determining responsibility when AI systems cause harm
  • International Standards: Harmonizing AI regulations globally
  • Security Standards: Establishing cybersecurity requirements for AI systems

Conclusion

OpenAI DevDay 2025 represents a watershed moment in the evolution of artificial intelligence. The revolutionary features announced—from ChatGPT Apps to AgentKit and Sora 2—signal a fundamental shift from AI as a tool to AI as an integrated platform that permeates every aspect of our digital lives.

These innovations are not merely incremental improvements but represent quantum leaps in capability, accessibility, and integration. The convergence of advanced language models, multimodal processing, and seamless application integration creates unprecedented opportunities for developers, businesses, and end users alike.

However, with these opportunities come significant responsibilities. The rapid advancement of AI capabilities requires careful consideration of ethical implications, social impact, and regulatory frameworks. As we stand at the threshold of this new era, it is imperative that we approach AI development with wisdom, foresight, and a commitment to benefiting all of humanity.

The future of AI is not just about technological advancement—it’s about creating a world where artificial intelligence enhances human potential, solves complex problems, and creates opportunities for unprecedented growth and innovation.

About This Analysis

Author: AI Quest Research Team

Publication Date: October 13, 2025

Category: AI Technology Analysis, OpenAI, DevDay 2025

Sources: openai.com/devday | YouTube Keynote

Methodology: Comprehensive analysis based on official announcements, technical specifications, and industry impact assessment

#OpenAI
#DevDay2025
#AI
#GPT5
#Sora2
#AgentKit
#Codex
#ChatGPT
#AIAnalysis
#Technology
#Innovation
#Future

 

Codex CLI vs Gemini CLI vs Claude Code

1. Codex CLI – Capabilities and New Features

According to OpenAI’s official announcement (“Introducing upgrades to Codex”), Codex CLI has been rebuilt on top of GPT-5-Codex, turning it into an agentic programming assistant — a developer AI that can autonomously plan, reason, and execute tasks across coding environments.

🌟 Core Abilities

  • Handles both small and large tasks: From writing a single function to refactoring entire projects.
  • Cross-platform integration: Works seamlessly across terminal (CLI), IDE (extension), and cloud environments.
  • Task reasoning and autonomy: Can track progress, decompose goals, and manage multi-step operations independently.
  • Secure by design: Runs in a sandbox with explicit permission requests for risky operations.

📈 Performance Highlights

  • Uses 93.7% fewer reasoning tokens for simple tasks, but invests 2× more computation on complex ones.
  • Successfully ran over 7 hours autonomously on long software tasks during testing.
  • Produces more precise code reviews than older Codex versions.

🟢 In short: Codex CLI 2025 is not just a code generator — it’s an intelligent coding agent capable of reasoning, multitasking, and working securely across terminal, IDE, and cloud environments.

2.Codex CLI vs Gemini CLI vs Claude Code: The New Era of AI in the Terminal

The command line has quietly become the next frontier for artificial intelligence.
While graphical AI tools dominate headlines, the real evolution is unfolding inside the terminal — where AI coding assistants now operate directly beside you, as part of your shell workflow.

Three major players define this new space: Codex CLI, Gemini CLI, and Claude Code.
Each represents a different philosophy of how AI should collaborate with developers — from speed and connectivity to reasoning depth. Let’s break down what makes each contender unique, and where they shine.


🧩 Codex CLI — OpenAI’s Code-Focused Terminal Companion

Codex CLI acts as a conversational layer over your terminal.
It listens to natural language commands, interprets your intent, and translates it into executable code or shell operations.
Now powered by OpenAI’s Codex5-Medium, it builds on the strengths of the o4-mini generation while adding adaptive reasoning and a larger 256K-token context window.

Once installed, Codex CLI integrates seamlessly with your local filesystem.
You can type:

“Create a Python script that fetches GitHub issues and logs them daily,”
and watch it instantly scaffold the files, import the right modules, and generate functional code.

Codex CLI supports multiple languages — Python, JavaScript, Go, Rust, and more — and is particularly strong at rapid prototyping and bug fixing.
Its defining trait is speed: responses feel immediate, making it perfect for fast iteration cycles.

Best for: developers who want quick, high-quality code generation and real-time debugging without leaving the terminal.


🌤️ Gemini CLI — Google’s Adaptive Terminal Intelligence

Gemini CLI embodies Google’s broader vision for connected AI development — blending reasoning, utility, and live data access.
Built on Gemini 2.5 Pro, this CLI isn’t just a coding bot — it’s a true multitool for developers and power users alike.

Beyond writing code, Gemini CLI can run shell commands, retrieve live web data, or interface with Google Cloud services.
It’s ideal for workflows that merge coding with external context — for example:

  • fetching live API responses,

  • monitoring real-time metrics,

  • or updating deployment configurations on-the-fly.

Tight integration with VS Code, Google Cloud SDK, and Workspace tools turns Gemini CLI into a full-spectrum AI companion rather than a mere code generator.

Best for: developers seeking a versatile assistant that combines coding intelligence with live, connected utility inside the terminal.


🧠 Claude Code — Anthropic’s Deep Code Reasoner

If Codex is about speed, and Gemini is about connectivity, Claude Code represents depth.
Built on Claude Sonnet 4.5, Anthropic’s upgraded reasoning model, Claude Code is designed to operate as a true engineering collaborator.

It excels at understanding, refactoring, and maintaining large-scale codebases.
Claude Code can read entire repositories, preserve logic across files, and even generate complete pull requests with human-like commit messages.
Its upgraded 250K-token context window allows it to track dependencies, explain architectural patterns, and ensure code consistency over time.

Claude’s replies are more analytical — often including explanations, design alternatives, and justifications for each change.
It trades a bit of speed for a lot more insight and reliability.

Best for: professional engineers or teams managing complex, multi-file projects that demand reasoning, consistency, and full-codebase awareness.

3.Codex CLI vs Gemini CLI vs Claude Code: Hands-on With Two Real Projects

While benchmarks and specs are useful, nothing beats actually putting AI coding agents to work.
To see how they perform on real, practical front-end tasks, I tested three leading terminal assistants — Codex CLI (Codex5-Medium), Gemini CLI (Gemini 2.5 Pro), and Claude Code (Sonnet 4.5) — by asking each to build two classic web projects using only HTML, CSS, and JavaScript.

  • 🎮 Project 1: Snake Game — canvas-based, pixel-style, smooth movement, responsive.

  • Project 2: Todo App — CRUD features, inline editing, filters, localStorage, dark theme, accessibility + keyboard support.

🎮 Task 1 — Snake Game

Goal

Create a playable 2D Snake Game using HTML, CSS, and JavaScript.
Display a grid-based canvas with a moving snake that grows when it eats food.
The snake should move continuously and respond to arrow-key inputs.
The game ends when the snake hits the wall or itself.
Include a score counter and a restart button with pixel-style graphics and responsive design.

Prompt

Create a playable 2D Snake Game using HTML, CSS, and JavaScript.

  The game should display a grid-based canvas with a moving snake that grows when it eats

  food.

  The snake should move continuously and respond to keyboard arrow keys for direction

  changes.

  The game ends when the snake hits the wall or itself.

  Show a score counter and a restart button.

  Use smooth movement, pixel-style graphics, and responsive design for different screen sizes

Observations

Codex CLI — Generated the basic canvas scaffold in seconds. Game loop, input, and scoring worked out of the box, but it required minor tuning for smoother turning and anti-reverse logic.

Gemini CLI — Delivered well-structured, commented code and used requestAnimationFrame properly. Gameplay worked fine, though the UI looked plain — more functional than fun.

Claude Code — Produced modular, production-ready code with solid collision handling, restart logic, and a polished HUD. Slightly slower response but the most complete result overall.

✅ Task 2 — Todo App

Goal

Build a complete, user-friendly Todo List App using only HTML, CSS, and JavaScript (no frameworks).
Features: add/edit/delete tasks, mark complete/incomplete, filter All / Active / Completed, clear completed, persist via localStorage, live counter, dark responsive UI, and full keyboard accessibility (Enter/Space/Delete).
Deliverables: index.html, style.css, app.js — clean, modular, commented, semantic HTML + ARIA.

Prompt

Develop a complete and user-friendly Todo List App using only HTML, CSS, and JavaScript (no frameworks). The app should include the following functionality and design requirements:

    1. Input field and ‘Add’ button to create new tasks.
    2. Ability to mark tasks as complete/incomplete via checkboxes.
    3. Inline editing of tasks by double-clicking — pressing Enter saves changes and Esc cancels.
    4. Delete buttons to remove tasks individually.
    5. Filter controls for All, Active, and Completed tasks.
    6. A ‘Clear Completed’ button to remove all completed tasks at once.
    7. Automatic saving and loading of todos using localStorage.
    8. A live counter showing the number of active (incomplete) tasks.
    9. A modern, responsive dark theme UI using CSS variables, rounded corners, and hover effects.
    10. Keyboard accessibility — Enter to add, Space to toggle, Delete to remove tasks.
      Ensure the project is well structured with three separate files:
    • index.html
    • style.css
    • app.js
      Code should be clean, modular, and commented, with semantic HTML and appropriate ARIA attributes for accessibility.

Observations

Codex CLI — Created a functional 3-file structure with working CRUD, filters, and persistence. Fast, but accessibility and keyboard flows needed manual reminders.

Gemini CLI — Balanced logic and UI nicely. Used CSS variables for a simple dark theme and implemented localStorage properly.
Performance was impressive — Gemini was the fastest overall, but its default design felt utilitarian, almost as if it “just wanted to get the job done.”
Gemini focuses on correctness and functionality rather than visual finesse.

Claude Code — Implemented inline editing, keyboard shortcuts, ARIA live counters, and semantic roles perfectly. The result was polished, responsive, and highly maintainable.

4.Codex CLI vs Gemini CLI vs Claude Code — Real-World Comparison

When testing AI coding assistants, speed isn’t everything — clarity, structure, and the quality of generated code all matter. To see how today’s top command-line tools compare, I ran the same set of projects across Claude Code, Gemini CLI, and Codex CLI, including a 2D Snake Game and a Todo List App.
Here’s how they performed.


Claude Code: Polished and Reliable

Claude Code consistently produced the most professional and complete results.
Its generated code came with clear structure, organized logic, and well-commented sections.
In the Snake Game test, Claude built the best-looking user interface, with a balanced layout, responsive design, and smooth movement logic.
Error handling was handled cleanly, and the overall experience felt refined — something you could hand over to a production team with confidence.
Although it wasn’t the fastest, Claude made up for it with code quality, structure, and ease of prompt engineering.
If your workflow values polish, maintainability, and readability, Claude Code is the most dependable choice.


Gemini CLI: Fastest but Basic

Gemini CLI clearly took the top spot for speed.
It executed quickly, generated files almost instantly, and made iteration cycles shorter.
However, the output itself felt minimal and unrefined — both the UI and the underlying logic were quite basic compared to Claude or Codex.
In the Snake Game task, Gemini produced a playable result but lacked visual polish and consistent structure.
Documentation and comments were also limited.
In short, Gemini is great for rapid prototyping or testing ideas quickly, but not for projects where you need beautiful UI, advanced logic, or long-term maintainability.


Codex CLI: Flexible but Slower

Codex CLI offered good flexibility and handled diverse prompts reasonably well.
It could generate functional UIs with decent styling, somewhere between Gemini’s simplicity and Claude’s refinement.
However, its main drawback was speed — responses were slower, and sometimes additional manual intervention was needed to correct or complete the code.
Codex is still a solid option when you need to tweak results manually or explore multiple implementation approaches, but it doesn’t match Claude’s polish or Gemini’s speed.


Overall Impression

After testing multiple projects, the overall ranking became clear:

  • Gemini CLI is the fastest but produces simple and unpolished code.

  • Claude Code delivers the most reliable, structured, and visually refined results.

  • Codex CLI sits in between — flexible but slower and less cohesive.

Each tool has its strengths. Gemini is ideal for quick builds, Codex for experimentation, and Claude Code for professional, trust-ready outputs.

In short:

Gemini wins on speed. Claude wins on quality. Codex stands in between — flexible but slower.

Best-of-∞: Hiệu Suất Tiệm Cận của Tính Toán Thời Gian Thử Nghiệm

Nghiên cứu đột phá về phương pháp tối ưu hóa hiệu suất LLM với Adaptive Generation và Weighted Ensemble

📝 Tóm Tắt

Chúng tôi nghiên cứu phương pháp Best-of-N cho các mô hình ngôn ngữ lớn (LLMs) với việc lựa chọn dựa trên bỏ phiếu đa số.
Đặc biệt, chúng tôi phân tích giới hạn khi N tiến đến vô cùng, mà chúng tôi gọi là Best-of-∞.
Mặc dù phương pháp này đạt được hiệu suất ấn tượng trong giới hạn, nó đòi hỏi thời gian tính toán vô hạn.
Để giải quyết vấn đề này, chúng tôi đề xuất một sơ đồ sinh câu trả lời thích ứng chọn số lượng N dựa trên sự đồng thuận của câu trả lời,
từ đó phân bổ hiệu quả tài nguyên tính toán. Ngoài tính thích ứng, chúng tôi mở rộng khung làm việc đến các
tổ hợp có trọng số của nhiều LLMs, cho thấy rằng các hỗn hợp như vậy có thể vượt trội hơn bất kỳ mô hình đơn lẻ nào.
Trọng số tổ hợp tối ưu được xây dựng và tính toán hiệu quả như một bài toán lập trình tuyến tính hỗn hợp nguyên.

🚀 Giới Thiệu

Trong những năm gần đây, chúng ta đã chứng kiến những tiến bộ đáng kể trong lĩnh vực Large Language Models (LLMs),
từ các mô hình đóng như Gemini, GPT, Claude đến các mô hình mã nguồn mở như Llama, DeepSeek, Qwen.
Một trong những mối quan tâm lớn nhất trong lĩnh vực LLMs là khả năng thực hiện các nhiệm vụ suy luận phức tạp.

Việc sử dụng nhiều tài nguyên tính toán hơn tại thời điểm kiểm tra, đặc biệt bằng cách tạo ra nhiều câu trả lời,
dẫn đến suy luận đáng tin cậy hơn. Một chiến lược đơn giản nhưng hiệu quả là phương pháp Best-of-N (BoN),
nơi chúng ta tạo ra N câu trả lời và chọn câu trả lời tốt nhất dựa trên một số tiêu chí.

Hình 1: Độ chính xác của Best-of-N với bỏ phiếu đa số theo hàm của N (GPT-OSS-20B) với bốn datasets.
Đường màu xanh lá chỉ ra độ chính xác tiệm cận của N→∞.

Có nhiều cách để triển khai chiến lược BoN. Một cách tiếp cận phổ biến là sử dụng reward model để chọn câu trả lời tốt nhất
hoặc yêu cầu LLM chọn câu trả lời ưa thích. Một cách tiếp cận khác là bỏ phiếu đa số trong đó câu trả lời xuất hiện
thường xuyên nhất được chọn.

Mặc dù đơn giản, bỏ phiếu đa số có nhiều ưu điểm. Đầu tiên, nó không yêu cầu mô hình hóa bổ sung hoặc tạo văn bản thêm.
Thứ hai, so với các phương pháp khác, bỏ phiếu đa số có khả năng chống lại reward hacking và hưởng lợi từ việc tạo thêm với rủi ro tối thiểu,
không giống như các mô hình dựa trên reward nơi việc tăng N có thể dẫn đến overfitting.

Minh họa adaptive sampling

Hình 2: Minh họa adaptive sampling (Algorithm 1). Histogram cho thấy phân phối các câu trả lời được tạo bởi LLM cho một bài toán đơn lẻ.
Màu xanh dương chỉ ra câu trả lời xuất hiện nhiều nhất, màu cam chỉ ra các câu trả lời khác.

Mặc dù chúng ta mong muốn đạt được hiệu suất Best-of-N như vậy khi N→∞, mà chúng ta gọi là hiệu suất Best-of-∞,
nó đòi hỏi một số lượng vô hạn các thế hệ (mẫu), điều này không khả thi trong các tình huống thực tế.
Tuy nhiên, với cùng ngân sách thời gian kiểm tra, chúng ta có thể sử dụng ngân sách có sẵn hiệu quả hơn.
Như được thể hiện trong Hình 2, chúng ta có thể tạo mẫu một cách thích ứng cho đến khi chúng ta xác định được đa số với một mức độ tin cậy nào đó.

Sơ đồ của chúng tôi có thể được mở rộng tự nhiên đến các tổ hợp của nhiều LLMs. Quan trọng là, bỏ phiếu đa số tổ hợp có thể tự nhiên
hưởng lợi từ tính bổ sung. Ví dụ, trong dataset AIME2025, hiệu suất Best-of-∞ của GPT-OSS-20B và Nemotron-Nano-9B-v2 lần lượt là 90.0% và 73.0%,
nhưng tổ hợp của chúng đạt được 93.3%. Một LLM yếu có thể đóng góp vào tổ hợp nếu nó có điểm mạnh bổ sung.

♾️ Best-of-∞ trong Mẫu Hữu Hạn

Trong khi Best-of-∞ định nghĩa một tổ hợp Best-of-N lý tưởng trong giới hạn N→∞, việc thực hiện theo nghĩa đen sẽ đòi hỏi
tính toán thời gian kiểm tra không giới hạn. Bây giờ chúng tôi phát triển một quy trình mẫu hữu hạn theo dõi chặt chẽ giới hạn này.

Ý tưởng cốt lõi của chúng tôi là lấy mẫu thích ứng (tức là yêu cầu LLM tạo ra câu trả lời) cho đến khi chúng ta chắc chắn
về bỏ phiếu đa số dân số với mức độ tin cậy mong muốn. Nói cách khác, chúng ta nhằm mục đích kết thúc quá trình tạo câu trả lời
ngay khi có đủ bằng chứng thống kê để hỗ trợ kết luận rằng phản hồi hiện tại xuất hiện thường xuyên nhất tương ứng với đa số thực sự,
điều này cho phép số lượng N khác nhau trên các vấn đề.

Một thách thức đặc biệt của vấn đề này nằm ở thực tế là hỗ trợ của phân phối câu trả lời được tạo bởi các mô hình ngôn ngữ lớn (LLMs)
là không xác định. Ví dụ, trong một trường hợp, LLM có thể tạo ra hai câu trả lời ứng viên, chẳng hạn như 42 với xác suất 70% và 105 với xác suất 30%,
trong khi trong trường hợp khác, nó có thể tạo ra bốn đầu ra riêng biệt, chẳng hạn như 111 với xác suất 40%, 1 với xác suất 25%,
2 với xác suất 20%, và 702 với xác suất 15%.

Với sự không chắc chắn như vậy trong sự thay đổi của các phản hồi được tạo, một cách tiếp cận đặc biệt phù hợp là sử dụng
mô hình hóa Bayesian không tham số. Đặc biệt, chúng tôi áp dụng một quy trình Dirichlet DP(H,α) trước trên không gian câu trả lời
nắm bắt phân phối không xác định của các câu trả lời. Ở đây, H là phân phối cơ sở trên không gian câu trả lời, và α > 0 là tham số tập trung
kiểm soát khả năng tạo ra câu trả lời mới.

🔧 Algorithm 1: Approximated Best-of-∞

Input: Maximum samples N_max, concentration parameter α, Bayes factor threshold B
1: for n = 1, 2, … do
2:   if using LLM Ensemble then
3:     Choose LLM with probability {w_i}_{i∈𝒦}
4:   end if
5:   Generate answer using selected LLM
6:   if n ≥ N_max then
7:     return majority answer
8:   end if
9:   Compute Bayes factor B_n
10:   if B_n ≥ B then
11:     return majority answer
12:   end if
13: end for
14: return The most frequent answer

Chúng tôi sử dụng Bayes factor để đo lường bằng chứng của đa số thực sự. Chính thức, chúng tôi định nghĩa các giả thuyết như sau:

📊 Định Nghĩa Giả Thuyết

H₀: Câu trả lời xuất hiện thường xuyên nhất A₁ không phải là đa số thực sự.

H₁: Câu trả lời xuất hiện thường xuyên nhất A₁ là đa số thực sự.

Bayes Factor: BF = P(D(n)|H₁) / P(D(n)|H₀)

Khi n đủ lớn so với α, P(H₁|D(n)) của posterior DP có thể được xấp xỉ bằng phân phối Dirichlet.
Mặc dù số lượng này không dễ tính toán, nó có thể được ước tính bằng các phương pháp Monte Carlo bằng cách lấy mẫu từ phân phối Dirichlet.

🎯 Định Lý 1: Sự Hội Tụ

Nếu chúng ta đặt N_max và B đủ lớn, hiệu suất của thuật toán hội tụ đến hiệu suất Best-of-∞.
Điều này đảm bảo rằng phương pháp adaptive sampling của chúng ta có thể đạt được hiệu suất gần như tối ưu
với số lượng mẫu hữu hạn.

🤝 Tổ Hợp LLM

🎯 Best-of-One

Trong phần này, chúng tôi mở rộng khung làm việc Best-of-∞ đến các tổ hợp có trọng số của nhiều LLMs.
Giả sử chúng ta có K LLMs khác nhau, mỗi LLM có thể tạo ra các câu trả lời khác nhau cho cùng một câu hỏi.
Mục tiêu của chúng ta là tìm ra cách kết hợp các LLMs này để đạt được hiệu suất tối ưu.

♾️ Best-of-∞

Câu hỏi trung tâm của chúng ta là làm thế nào để chọn một vector trọng số w tối đa hóa độ chính xác f(w).
Lemma sau đây ngụ ý độ khó của việc tối ưu hóa f(w).

📝 Lemma 2: Non-concavity

f(w) là một hàm không lồi trên không gian simplex của w. Điều này có nghĩa là các phương pháp dựa trên gradient
sẽ không thể tìm ra giải pháp tối ưu toàn cục.

Visualization của non-concave objective function

Hình 3: Visualization của hàm mục tiêu không lồi f(w) trên weight simplex w.
Simplex màu vàng tương ứng với w trong simplex của các trọng số của ba LLMs.

Mặc dù non-concavity ngụ ý tính tối ưu dưới của các phương pháp dựa trên gradient, một cách tiếp cận tối ưu hóa tổ hợp
có thể được áp dụng cho các trường hợp có quy mô điển hình. Điểm mấu chốt trong việc tối ưu hóa f(w) là tổng trong phương trình
nhận giá trị một trong một polytope.

📝 Lemma 3: Polytope Lemma

Cho {p^q_ij} là các phân phối tùy ý của các câu trả lời. Khi đó, tập hợp sau, ngụ ý rằng câu trả lời j là câu trả lời
xuất hiện thường xuyên nhất, là một polytope: {w ∈ Δ_K : Σ_i w_i p^q_ij > max_{j’≠j} Σ_i w_i p^q_ij’}

Lemma 3 nói rằng việc tối đa hóa số lượng câu trả lời đúng tương đương với việc tối đa hóa số lượng polytopes chứa w.
Bằng cách giới thiệu biến phụ y_q chỉ ra tính đúng đắn cho mỗi câu trả lời, điều này có thể được xây dựng như một
bài toán lập trình tuyến tính hỗn hợp nguyên (MILP).

📝 Lemma 4: MILP Formulation

Việc tối đa hóa f(w) tương đương với bài toán MILP sau:

max Σ_q y_q

s.t. w_i ≥ 0 ∀_i, Σ_i w_i = 1, A_q w ≥ -m(1-y_q) ∀q

trong đó A_q là ma trận kích thước ℝ^{|𝒜_q|×K}

⚖️ Max Margin Solutions

Như chúng tôi đã minh họa trong Hình 3, hàm mục tiêu f(w) có vùng liên tục của các giải pháp tối ưu.
Trong khi bất kỳ điểm nội thất nào trên vị trí này đều tối ưu trong Best-of-∞, hiệu suất hữu hạn-N của nó có thể thay đổi.
Trong bài báo này, chúng tôi áp dụng giải pháp “max margin”, tức là ở phần nội thất nhất của giải pháp.

Cụ thể, chúng tôi giới thiệu margin ξ > 0 và thay thế A_q w trong phương trình với A_q w – ξ.
Chúng tôi chọn supremum của margin ξ sao cho giá trị mục tiêu Σ_q y_q không giảm, và áp dụng giải pháp trên margin như vậy.

🧪 Thí Nghiệm

Phần này báo cáo kết quả thí nghiệm của chúng tôi. Chúng tôi xem xét các nhiệm vụ suy luận nặng trên các LLMs mã nguồn mở
mà chúng tôi có thể kiểm tra trong môi trường cục bộ của mình. Chúng tôi đặt siêu tham số α = 0.3 của Algorithm 1 cho tất cả các thí nghiệm.

Để giải MILPs, chúng tôi sử dụng highspy, một giao diện Python mã nguồn mở cho bộ tối ưu hóa HiGHS,
cung cấp các solver tiên tiến cho LP, MIP và MILP quy mô lớn. Chúng tôi áp dụng giải pháp max-margin được mô tả trong Phần 3.2.
Trừ khi được chỉ định khác, tất cả kết quả được ước tính từ 100 lần chạy độc lập. Bayes factor được tính toán với 1,000 mẫu Monte Carlo từ posterior.

📊 LLMs và Datasets Được Test

Chúng tôi đánh giá các LLMs mã nguồn mở (≤ 32B tham số) trên bốn benchmark suy luận. Chúng tôi sử dụng các bộ vấn đề sau:
AIME2024, AIME2025, GPQA-DIAMOND (Graduate-Level Google-Proof Q&A Benchmark), và MATH500.
Các datasets này là các nhiệm vụ suy luận toán học và khoa học đầy thách thức.

📈 Large-scale Generation Dataset

Chúng tôi tạo ra một tập hợp các câu trả lời ứng viên bằng cách truy vấn LLM với câu lệnh vấn đề.
Cho mỗi cặp (LLM, vấn đề), chúng tôi tạo ra ít nhất 80 câu trả lời—một bậc độ lớn lớn hơn 8 thế hệ điển hình
được báo cáo trong hầu hết các báo cáo kỹ thuật LLM. Chúng tôi tin rằng độ khó của các vấn đề cũng như quy mô
của các token được tạo ra đáng kể lớn hơn công việc hiện có về tính toán thời gian kiểm tra.

📊 Thống Kê Dataset

LLM # Files Total Tokens File Size (MB)
AM-Thinking-v1 4,800 79,438,111 185.95
Datarus-R1-14B-preview 4,800 49,968,613 127.03
EXAONE-Deep-32B 60,640 478,575,594 1,372.35
GPT-OSS-20B 68,605 244,985,253 98.59
LIMO-v2 6,095 77,460,567 219.45
MetaStone-S1-32B 4,800 79,438,111 185.95
NVIDIA-Nemotron-Nano-9B-v2 4,800 79,438,111 185.95
Phi-4-reasoning 4,800 79,438,111 185.95
Qwen3-4B 4,800 79,438,111 185.95
Qwen3-14B 4,800 79,438,111 185.95
Qwen3-30B-A3B-Thinking-2507 4,800 79,438,111 185.95

📊 Kết Quả Thí Nghiệm

🎯 Experimental Set 1: Hiệu Quả của Adaptive Sampling

Trong thí nghiệm đầu tiên, chúng tôi so sánh hiệu quả của phương pháp adaptive sampling với phương pháp fixed BoN.
Kết quả cho thấy rằng Algorithm 1 với kích thước mẫu trung bình N̄=3 đạt được độ chính xác tương tự như fixed sample của N=10,
cho thấy hiệu quả đáng kể của adaptive sampling.

🤝 Experimental Set 2: Ưu Thế của LLM Ensemble

Thí nghiệm thứ hai chứng minh ưu thế của tổ hợp LLM so với mô hình đơn lẻ. Chúng tôi kết hợp năm LLMs:
EXAONE-Deep-32B, MetaStone-S1-32B, Phi-4-reasoning, Qwen3-30B-A3B-Thinking, và GPT-OSS-20B trên GPQA-Diamond.
Trọng số được tối ưu hóa thành w=(0.0176,0.0346,0.2690,0.4145,0.2644). Tổ hợp LLM vượt trội hơn bất kỳ mô hình đơn lẻ nào với N≥5.

⚖️ Experimental Set 3: Học Trọng Số Tốt

Thí nghiệm thứ ba khám phá việc học trọng số tối ưu từ dữ liệu. Chúng tôi sử dụng số lượng mẫu khác nhau để xác định trọng số
và đo hiệu suất Best-of-∞ trên AIME2025. Kết quả cho thấy rằng chỉ cần một số lượng mẫu tương đối nhỏ là đủ để học được trọng số tốt.

🔄 Experimental Set 4: Transfer Learning của Trọng Số Tối Ưu

Thí nghiệm thứ tư khám phá khả năng transfer learning của trọng số được học từ một dataset sang dataset khác.
Kết quả cho thấy rằng trọng số được học từ một dataset có thể được áp dụng hiệu quả cho các dataset khác,
cho thấy tính tổng quát của phương pháp.

📊 Experimental Set 5: So Sánh với Các Phương Pháp Chọn Câu Trả Lời Khác

Thí nghiệm cuối cùng so sánh phương pháp của chúng tôi với các phương pháp chọn câu trả lời khác, bao gồm LLM-as-a-judge,
reward models, và self-certainty. Kết quả cho thấy Majority Voting đạt hiệu suất cao thứ hai sau Omniscient,
vượt trội hơn các phương pháp khác.

📈 Kết Quả Hiệu Suất Chi Tiết

LLM AIME2024 AIME2025 GPQA-D MATH500
AM-Thinking-v1 0.867 0.867 0.707 0.950
EXAONE-Deep-32B 0.867 0.767 0.692 0.962
GPT-OSS-20B 0.900 0.900 0.722 0.960
MetaStone-S1-32B 0.867 0.800 0.707 0.950
NVIDIA-Nemotron-Nano-9B-v2 0.867 0.733 0.626 0.956
Phi-4-reasoning 0.867 0.833 0.727 0.944
Qwen3-30B-A3B-Thinking-2507 0.933 0.900 0.732 0.960

Method AIME2025 (%) Mô Tả
Omniscient 91.04 ± 1.32 Lý thuyết: luôn chọn đúng nếu có trong candidates
Majority Voting 85.42 ± 2.01 Chọn câu trả lời xuất hiện nhiều nhất
LLM-as-a-judge (tournament) 82.92 ± 2.57 So sánh từng cặp câu trả lời
LLM-as-a-judge (set) 81.25 ± 2.42 So sánh tất cả câu trả lời cùng lúc
INF-ORM-Llama3.1-70B 79.79 ± 2.54 Reward model đứng thứ 9 RewardBench
Skywork-Reward-V2-Llama-3.1-8B 79.79 ± 2.47 Reward model đứng thứ 1 RewardBench
Skywork-Reward-V2-Qwen3-8B 80.00 ± 2.51 Reward model đứng thứ 6 RewardBench
Self-certainty 75.83 ± 2.47 Chọn câu trả lời có confidence cao nhất
Random (≈ Bo1) 76.25 ± 2.71 Chọn ngẫu nhiên (baseline)

Kết quả cho thấy Majority Voting đạt hiệu suất cao thứ hai sau Omniscient,
vượt trội hơn các phương pháp dựa trên reward model và LLM-as-a-judge. Điều này chứng minh tính hiệu quả
của phương pháp đơn giản nhưng mạnh mẽ này.

🔍 Phát Hiện Chính

✅ Hiệu Quả Adaptive Sampling

Phương pháp adaptive sampling giảm đáng kể số lượng thế hệ cần thiết
trong khi vẫn duy trì hiệu suất cao. Algorithm 1 với N̄=3 đạt được
độ chính xác tương tự như fixed sample của N=10, cho thấy hiệu quả
tính toán đáng kể.

🤝 Ưu Thế Ensemble

Tổ hợp có trọng số của nhiều LLMs vượt trội hơn bất kỳ mô hình đơn lẻ nào,
đặc biệt khi có tính bổ sung. Ensemble đạt 93.3% so với 90.0% của mô hình tốt nhất,
chứng minh giá trị của việc kết hợp các mô hình.

⚖️ Tối Ưu Hóa Trọng Số

Việc tối ưu hóa trọng số ensemble được giải quyết hiệu quả
như một bài toán MILP, cho phép tìm ra trọng số tối ưu một cách có hệ thống.
Phương pháp max-margin đảm bảo tính ổn định cho các ứng dụng thực tế.

📊 Quy Mô Lớn

Thí nghiệm với 11 LLMs và 4 datasets, tổng cộng hơn 3,500 thế hệ
cho mỗi kết hợp LLM–dataset, đại diện cho quy mô lớn nhất trong nghiên cứu hiện tại.
Dataset này sẽ được phát hành cho nghiên cứu tiếp theo.

💡 Insights Quan Trọng

  • Bayes Factor hiệu quả: Phương pháp Bayes Factor cho phép dừng adaptive sampling một cách thông minh,
    tiết kiệm tài nguyên tính toán đáng kể.
  • Tính bổ sung của LLMs: Các LLMs yếu có thể đóng góp tích cực vào ensemble nếu chúng có điểm mạnh bổ sung.
  • Transfer learning: Trọng số được học từ một dataset có thể được áp dụng hiệu quả cho các dataset khác.
  • Robustness: Majority voting robust hơn các phương pháp dựa trên reward model và ít bị ảnh hưởng bởi reward hacking.

🎯 Kết Luận

Trong bài báo này, chúng tôi xem chiến lược Best-of-N với bỏ phiếu đa số như việc lấy mẫu từ
phân phối câu trả lời cơ bản, với hiệu suất Best-of-∞ được định nghĩa tự nhiên.
Để xấp xỉ giới hạn này với một số lượng hữu hạn các mẫu, chúng tôi giới thiệu một phương pháp lấy mẫu thích ứng dựa trên Bayes Factor.

Chúng tôi cũng nghiên cứu vấn đề tổng hợp phản hồi từ nhiều LLMs và đề xuất một bỏ phiếu đa số
tận dụng hiệu quả điểm mạnh của các mô hình cá nhân. Hiệu suất Best-of-∞ có ưu thế vì trọng số của
tổ hợp LLM có thể được tối ưu hóa bằng cách giải một bài toán lập trình tuyến tính hỗn hợp nguyên.

Các thí nghiệm rộng rãi của chúng tôi chứng minh hiệu quả của phương pháp được đề xuất.
Chúng tôi đã thử nghiệm với 11 LLMs được điều chỉnh theo hướng dẫn và bốn bộ vấn đề suy luận nặng,
với ít nhất 80 thế hệ cho mỗi kết hợp LLM–bộ vấn đề. Điều này đại diện cho quy mô lớn hơn đáng kể
của tính toán thời gian kiểm tra so với công việc trước đây.

🚀 Tác Động và Ý Nghĩa

Nghiên cứu này mở ra những khả năng mới trong việc tối ưu hóa hiệu suất LLM thông qua
adaptive generation và weighted ensemble, đặc biệt quan trọng cho các ứng dụng yêu cầu độ chính xác cao
như toán học, khoa học và suy luận phức tạp. Phương pháp này có thể được áp dụng rộng rãi
trong các hệ thống AI thực tế để cải thiện độ tin cậy và hiệu suất. Việc phát hành dataset
và source code sẽ thúc đẩy nghiên cứu tiếp theo trong lĩnh vực này.

⚠️ Hạn Chế và Hướng Phát Triển

Mặc dù có những kết quả tích cực, nghiên cứu này vẫn có một số hạn chế. Việc tối ưu hóa MILP có thể
trở nên khó khăn với số lượng LLMs rất lớn. Ngoài ra, phương pháp adaptive sampling dựa trên Bayes Factor
có thể cần điều chỉnh cho các loại nhiệm vụ khác nhau. Hướng phát triển tương lai bao gồm việc mở rộng
phương pháp cho các nhiệm vụ multimodal và khám phá các cách tiếp cận hiệu quả hơn cho việc tối ưu hóa ensemble.

🔧 Chi Tiết Kỹ Thuật

📈 Datasets Sử Dụng

  • AIME2024: American Invitational Mathematics Examination – 15 bài toán toán học khó
  • AIME2025: Phiên bản mới của AIME với độ khó tương tự
  • GPQA-DIAMOND: Graduate-level Physics Questions – 448 câu hỏi vật lý trình độ sau đại học
  • MATH500: Mathematical reasoning problems – 500 bài toán toán học từ MATH dataset

🤖 LLMs Được Test

  • GPT-OSS-20B (OpenAI) – 20B parameters
  • Phi-4-reasoning (Microsoft) – 14B parameters
  • Qwen3-30B-A3B-Thinking – 30B parameters
  • Nemotron-Nano-9B-v2 (NVIDIA) – 9B parameters
  • EXAONE-Deep-32B – 32B parameters
  • MetaStone-S1-32B – 32B parameters
  • Và 5 mô hình khác

💻 Source Code và Dataset

Source code của nghiên cứu này có sẵn tại:
https://github.com/jkomiyama/BoInf-code-publish

Dataset với hơn 3,500 thế hệ cho mỗi kết hợp LLM–dataset sẽ được phát hành để thúc đẩy nghiên cứu tiếp theo
trong lĩnh vực test-time computation và LLM ensemble.

⚙️ Hyperparameters và Cài Đặt

  • Concentration parameter α: 0.3 cho tất cả thí nghiệm
  • Bayes factor threshold B: Được điều chỉnh cho từng dataset
  • Maximum samples N_max: 100 cho adaptive sampling
  • Monte Carlo samples: 1,000 cho tính toán Bayes factor
  • Independent runs: 100 cho mỗi thí nghiệm

 

📋 Thông Tin Nghiên Cứu

🔬 Nghiên Cứu Gốc

Tiêu đề: Best-of-∞ – Asymptotic Performance of Test-Time Compute

Tác giả: Junpei Komiyama, Daisuke Oba, Masafumi Oyamada

Ngày xuất bản: 26 Sep 2025

Nguồn: arXiv:2509.21091

🎯 Đóng Góp Chính

  • Phân tích hiệu suất tiệm cận của Best-of-N
  • Đề xuất phương pháp Adaptive Generation
  • Tối ưu hóa Weighted Ensemble với MILP
  • Thí nghiệm với 11 LLMs và 4 datasets

💻 Source Code & Dataset

GitHub: BoInf-code-publish

Dataset: Hơn 3,500 thế hệ cho mỗi kết hợp LLM–dataset

📊 Quy Mô Nghiên Cứu

LLMs: 11 mô hình mã nguồn mở

Datasets: 4 benchmark suy luận

Generations: ≥80 lần sinh cho mỗi kết hợp

Blog được tạo từ nghiên cứu gốc với mục đích giáo dục và chia sẻ kiến thức về AI và Machine Learning.

Tất cả hình ảnh và dữ liệu được trích xuất từ bài báo nghiên cứu gốc.
Đây là một trong những nghiên cứu quy mô lớn nhất về test-time computation trong LLMs.

 

Toàn cảnh OpenAI DevDay 2025 – Khi AI chạm ngưỡng sáng tạo không giới hạn

Thế giới công nghệ một lần nữa dõi theo sân khấu DevDay của OpenAI – nơi những bước tiến vượt bậc của trí tuệ nhân tạo được công bố, mở ra kỷ nguyên sáng tạo không giới hạn giữa con người và máy móc.

🌍 1. Khi thế giới chờ đợi bước ngoặt mới của AI

Chỉ sau một năm kể từ DevDay 2024, OpenAI đã chứng minh tốc độ phát triển của mình không hề chậm lại. Nếu năm trước là thời điểm GPT-4 Turbo và GPTs tùy chỉnh ra đời, thì năm 2025 đánh dấu một cú nhảy vọt về khả năng sáng tạo, tính tương tác, và mức độ tích hợp sâu vào hệ sinh thái ứng dụng thực tế.

Sam Altman, CEO của OpenAI, mở đầu sự kiện với một thông điệp mạnh mẽ:

“Chúng tôi muốn xây dựng AI không chỉ hiểu thế giới — mà còn giúp con người xây dựng thế giới tốt đẹp hơn.”

Sự kiện DevDay 2025 tập trung vào 4 hướng phát triển cốt lõi:

  1. Tăng khả năng tương tác của ChatGPT – biến AI từ công cụ thành nền tảng ứng dụng hoàn chỉnh.

  2. Tự động hóa ở quy mô doanh nghiệp – qua các agent thế hệ mới.

  3. Tăng sức mạnh cho lập trình viên – với GPT-5-Codex.

  4. Mở rộng hệ sinh thái API – mang AI đến mọi ứng dụng.

🎯 Tổng thể, DevDay 2025 không chỉ là buổi trình diễn công nghệ — mà là lời khẳng định rằng OpenAI đang chuyển mình từ “người tạo ra mô hình” sang “người tạo ra nền tảng AI toàn diện.”


OpenAI DevDay 2025: Chatbots, Platforms, Agents & Hardware


🚀 2. Những công bố quan trọng tại OpenAI DevDay 2025

Năm nay, OpenAI không chỉ nâng cấp các mô hình, mà còn giới thiệu một hệ sinh thái công cụ và API mới giúp AI trở thành phần lõi trong mọi quy trình sáng tạo và phát triển sản phẩm.

Dưới đây là tổng hợp những công nghệ đột phá được công bố:


⚙️ 2.1. Apps SDK – Xây dựng ứng dụng ngay bên trong ChatGPT

Một trong những công bố được mong chờ nhất chính là Apps SDK, bộ công cụ cho phép các nhà phát triển xây dựng ứng dụng tương tác đầy đủ, chạy trực tiếp trong giao diện ChatGPT.

Với Apps SDK, ChatGPT giờ đây không chỉ là chatbot, mà trở thành một hệ điều hành mini cho thế giới ứng dụng AI.

  • Nhà phát triển có thể tạo mini-apps, tích hợp quy trình riêng, hiển thị giao diện người dùng (UI) động ngay trong khung chat.

  • Ứng dụng có thể gọi API ngoài, lưu dữ liệu tạm thời, hoặc tương tác với plugin khác trong cùng cuộc trò chuyện.

  • Người dùng chỉ cần ChatGPT — không cần cài thêm phần mềm, tất cả hoạt động trong môi trường an toàn của OpenAI.

Ví dụ:
Một nhóm startup về giáo dục có thể xây dựng ứng dụng học ngôn ngữ tương tác với bài kiểm tra, flashcard và hệ thống gợi ý thông minh — tất cả ngay trong ChatGPT.

🗣️ Sam Altman chia sẻ:
“Chúng tôi muốn biến ChatGPT thành nền tảng phát triển ứng dụng AI, nơi mọi người có thể sáng tạo ngay trong giao diện quen thuộc nhất.”

Tác động: Apps SDK giúp rút ngắn đáng kể thời gian thử nghiệm và triển khai ứng dụng AI, đồng thời mở đường cho một thế hệ nhà phát triển “native AI app” mới.



🧩 2.2. AgentKit – Nền tảng xây dựng và quản lý Agent ở cấp doanh nghiệp

Nếu Apps SDK hướng tới nhà phát triển ứng dụng nhỏ lẻ, thì AgentKit là cú hích cho doanh nghiệp.

Đây là bộ công cụ toàn diện cho phép các tổ chức xây dựng, huấn luyện, triển khai và giám sát các AI Agent tự động hóa, phục vụ các quy trình phức tạp như chăm sóc khách hàng, hỗ trợ kỹ thuật, vận hành nội bộ, hay thậm chí ra quyết định chiến lược.

Điểm đặc biệt:

  • dashboard quản trị theo thời gian thực.

  • Tích hợp giám sát hành vi AI để đảm bảo tuân thủ chính sách và bảo mật dữ liệu.

  • Cho phép hợp tác giữa nhiều agent, hình thành multi-agent system (hệ thống đa agent) linh hoạt.

OpenAI cũng công bố rằng AgentKit sẽ được tích hợp trực tiếp với GPT-5 Pro API, giúp các agent hiểu ngữ cảnh sâu hơn và tự học từ dữ liệu vận hành.

💬 Theo lời của Mira Murati – CTO của OpenAI:
“AgentKit không chỉ giúp doanh nghiệp tiết kiệm chi phí, mà còn thay đổi cách họ thiết kế hệ thống làm việc với con người.”


Interface view of a customer service automation flow in a visual builder tool. The canvas shows connected nodes labeled Start, Jailbreak guardrail, Classification agent, If/else, Return agent, Retention agent, Information agent, Hallucination guardrail, and End. A sidebar on the left lists available node types such as Agent, Note, File search, Guardrails, MCP, and User approval. Top controls include options for Evaluate, Code, Preview, and Publish.


💻 2.3. Codex & GPT-5-Codex – Trợ lý lập trình AI thế hệ mới

Sau nhiều năm chờ đợi, Codex – trợ lý lập trình huyền thoại – đã chính thức quay trở lại với phiên bản hoàn thiện mang tên GPT-5-Codex.

Đây không chỉ là bản nâng cấp mà là một mô hình chuyên dụng hoàn toàn mới, được tinh chỉnh dựa trên nền tảng GPT-5 nhằm tối ưu cho tác vụ lập trình, debug, và phát triển phần mềm quy mô lớn.

Một số khả năng nổi bật:

  • Hiểu toàn bộ project context, không chỉ từng file code.

  • Sinh code đa ngôn ngữ, từ Python, TypeScript, Java đến Rust.

  • Phân tích và gợi ý cải tiến hiệu năng dựa trên lịch sử commit.

  • Tích hợp sâu với IDE (Visual Studio Code, JetBrains, Cursor, v.v.).

OpenAI cũng tuyên bố GPT-5-Codex đã đạt trạng thái General Availability (GA), nghĩa là nó sẵn sàng dùng trong môi trường sản xuất.

🧠 Điểm đáng chú ý: GPT-5-Codex có thể hoạt động song song với AgentKit, giúp tự động viết, kiểm thử và triển khai code theo quy trình DevOps.



🌐 2.4. Các Model API Mới – GPT-5 Pro, Sora 2 và gpt-realtime-mini

Phần được mong đợi nhất trong mọi kỳ DevDay chính là công bố các model AI mới, và năm nay OpenAI không khiến giới công nghệ thất vọng.

🔹 GPT-5 Pro

Phiên bản mạnh nhất của GPT-5, được tinh chỉnh cho hiệu suất doanh nghiệp, có khả năng xử lý ngữ cảnh lên đến 2 triệu token, giúp duy trì các cuộc hội thoại hoặc tài liệu cực dài.

🔹 Sora 2

Phiên bản nâng cấp của mô hình video-to-text đình đám, nay hỗ trợ tạo video thời lượng dài hơn, khung hình mượt hơn, và điều khiển nội dung bằng script chi tiết.

🔹 gpt-realtime-mini

Mẫu model nhẹ, tối ưu cho ứng dụng cần phản hồi tức thì, như chatbot realtime, game hoặc ứng dụng tương tác.

Cả ba model đều được mở API trên nền tảng OpenAI Developer Platform, cho phép các nhà phát triển kết hợp linh hoạt trong cùng hệ thống – ví dụ dùng GPT-5 Pro để phân tích tài liệu, còn Sora 2 để tạo video minh họa.



🌟 3. Điểm sáng nổi bật tại OpenAI DevDay 2025

Nếu phải chọn từ khóa cho DevDay năm nay, đó sẽ là “tích hợp – tự động – sáng tạo.”
OpenAI không chỉ ra mắt các model mới, mà còn xây dựng nền tảng thống nhất để mọi thành phần trong hệ sinh thái có thể kết nối, từ cá nhân đến doanh nghiệp.


🔸 3.1. Hệ sinh thái thống nhất: ChatGPT trở thành “trung tâm điều hành AI”

OpenAI hướng đến việc biến ChatGPT thành nền tảng điều hành AI đa năng, thay vì chỉ là giao diện hội thoại.
Giờ đây, người dùng có thể:

  • Chạy ứng dụng (Apps SDK)

  • Kết nối agent (AgentKit)

  • Gọi API model (GPT-5 Pro, Sora 2, v.v.)

  • Tùy chỉnh không gian làm việc theo workflow của riêng mình

Điều này khiến ChatGPT tiến gần đến vai trò của một hệ điều hành AI (AI OS) – nơi mọi quy trình sáng tạo, học tập, và phát triển đều diễn ra ngay trong một môi trường duy nhất.

🗣️ “Chúng tôi không chỉ tạo ra công cụ. Chúng tôi đang tạo ra nền tảng cho tương lai sáng tạo của nhân loại.” — Sam Altman



🔸 3.2. Sức mạnh của tính tương tác thời gian thực

Một trong những cải tiến quan trọng nhất là năng lực xử lý realtime.
Nhờ vào gpt-realtime-mini, các ứng dụng nay có thể phản hồi gần như ngay lập tức – điều mà trước đây GPT-4 hoặc GPT-5 thường có độ trễ vài giây.

Ứng dụng thực tế:

  • Game tương tác với nhân vật AI “biết lắng nghe”.

  • Ứng dụng học ngoại ngữ phản hồi giọng nói ngay khi người dùng nói xong.

  • Trợ lý kỹ thuật hoặc bán hàng phản ứng tức thì khi khách hàng thay đổi yêu cầu.

Khả năng “nghe – hiểu – phản ứng” theo thời gian thực biến AI từ một công cụ tĩnh thành một đối tác động, thay đổi hoàn toàn trải nghiệm người dùng.



🔸 3.3. Codex: Khi AI trở thành cộng sự thực thụ của lập trình viên

GPT-5-Codex không chỉ giúp sinh code nhanh hơn mà còn hiểu được bối cảnh dự án – điều mà trước đây chưa mô hình nào làm được hoàn hảo.
Ví dụ, khi developer hỏi:

“Phần này có thể tối ưu thế nào để giảm thời gian phản hồi API?”

Codex không chỉ sửa cú pháp mà còn đề xuất kiến trúc lại luồng xử lý, gợi ý dùng cache, thậm chí phân tích log hiệu năng.

Điều này đưa Codex từ vai trò “AI gợi ý code” lên tầm “đồng nghiệp lập trình AI.”



🔸 3.4. Hướng mở cho cộng đồng phát triển

OpenAI tuyên bố rằng từ 2025 trở đi, nền tảng của họ sẽ mở hơn bao giờ hết.
Các SDK, AgentKit, và API mới đều có tài liệu công khai, minh bạch, giúp cộng đồng developer và doanh nghiệp dễ dàng tham gia.

Cùng với việc ra mắt OpenAI Developer Hub, nhà phát triển có thể:

  • Chia sẻ mini-app và agent

  • Tham gia kiểm thử sớm các model mới

  • Nhận phản hồi trực tiếp từ đội ngũ kỹ thuật OpenAI

Điều này mở ra một hệ sinh thái cộng tác hai chiều – nơi nhà phát triển không chỉ sử dụng, mà còn góp phần hoàn thiện sản phẩm AI.



🌐 4. Tác động và ý nghĩa với giới công nghệ

DevDay 2025 không chỉ tạo tiếng vang cho OpenAI mà còn tác động mạnh đến toàn bộ hệ sinh thái AI toàn cầu.

🔹 4.1. Với nhà phát triển

  • Giảm chi phí khởi tạo ứng dụng AI: Nhờ Apps SDK và API thống nhất, việc thử nghiệm nhanh hơn, chi phí hạ tầng thấp hơn.

  • Tăng năng suất phát triển: Codex giúp rút ngắn vòng đời sản phẩm phần mềm.

  • Tự động hóa quy trình DevOps: AgentKit cho phép triển khai, kiểm thử, và bảo trì code gần như tự động.

🔹 4.2. Với doanh nghiệp

  • Doanh nghiệp có thể xây dựng hệ thống nội bộ thông minh mà không cần đội ngũ AI riêng biệt.

  • Các agent có khả năng hoạt động liên tục 24/7, phân tích và đề xuất hành động chiến lược.

  • Tích hợp nhanh vào nền tảng hiện có qua API mở.

🔹 4.3. Với người dùng phổ thông

  • AI trở nên gần gũi và hữu ích hơn trong từng tác vụ: học tập, sáng tạo, quản lý thời gian.

  • Trải nghiệm ChatGPT giờ không còn chỉ là “chat”, mà là trung tâm cá nhân hóa cuộc sống số.



🔭 5. Tầm nhìn tương lai: Khi con người và AI cùng sáng tạo

OpenAI khẳng định rằng GPT-5 chỉ là một bước trong hành trình dài hướng đến mục tiêu cuối cùng – xây dựng Artificial General Intelligence (AGI) có khả năng học, hiểu và sáng tạo như con người.

Tuy nhiên, điều đáng chú ý trong DevDay 2025 là cách họ chuyển trọng tâm từ “tăng sức mạnh mô hình” sang “mở rộng khả năng hợp tác”.

AI giờ đây không chỉ:

  • Trả lời câu hỏi,

  • Mà còn hiểu ngữ cảnh,

  • Tương tác qua nhiều công cụ,

  • Và cùng con người sáng tạo sản phẩm hoàn chỉnh.

Đây chính là nền tảng cho “co-creation era” – kỷ nguyên đồng sáng tạo giữa người và máy.



🧭 6. Kết luận: Bước ngoặt cho kỷ nguyên AI sáng tạo

OpenAI DevDay 2025 đã cho thấy một điều rõ ràng:

Tương lai của AI không chỉ nằm ở mô hình mạnh mẽ hơn, mà ở khả năng tương tác sâu hơn với con người.

Với Apps SDK, AgentKit, Codex, và loạt model API mới, OpenAI đang định hình lại vai trò của trí tuệ nhân tạo trong đời sống và doanh nghiệp.
AI không còn là công cụ bị động, mà là đối tác sáng tạo, cộng sự lập trình, và người hỗ trợ tầm nhìn chiến lược.


🔗 Nguồn tham khảo:

Posted in AI

OpenAI AgentKit vs Dify

🤖 OpenAI AgentKit vs Dify

A Comprehensive Technical Comparison of Two Leading AI Agent Development Platforms

Last Updated: October 2025 | DevDay 2025 Analysis

Executive Summary: OpenAI AgentKit and Dify represent two distinct approaches to AI agent development. AgentKit, announced at OpenAI’s DevDay 2025, offers a comprehensive, proprietary toolkit designed to streamline agent creation within the OpenAI ecosystem. Dify, an open-source platform, provides extensive flexibility with multi-provider LLM support and full infrastructure control. This guide examines both platforms in depth to help you make an informed decision.

🚀 Platform Overview

OpenAI AgentKit

Launched October 2025 at DevDay, AgentKit is OpenAI’s complete toolkit for building production-ready AI agents with minimal friction.

  • Proprietary platform by OpenAI
  • Cloud-based deployment
  • Deep OpenAI ecosystem integration
  • Enterprise-grade security built-in
  • Visual drag-and-drop builder
  • Rapid prototyping (agents in hours, not months)

Dify

Open-source LLMOps platform with 180,000+ developers, supporting comprehensive AI application development with full control.

  • 100% open-source platform
  • Self-hosted or cloud deployment
  • Multi-provider LLM support (GPT, Claude, Llama, etc.)
  • Complete data sovereignty
  • Extensive RAG capabilities
  • Active community of 180,000+ developers

🎯 OpenAI AgentKit – Core Features

🎨 Agent Builder

A visual canvas for creating and versioning multi-agent workflows using drag-and-drop functionality. Developers can design complex agent interactions without extensive coding.

  • Visual workflow designer
  • Version control for agent workflows
  • Multi-agent orchestration
  • Real-time collaboration
  • 70% faster iteration cycles reported

💬 ChatKit

Embeddable, customizable chat interfaces that can be integrated directly into your applications with your own branding and workflows.

  • White-label chat interfaces
  • Custom branding options
  • Pre-built UI components
  • Seamless product integration
  • Mobile-responsive design

🔌 Connector Registry

Centralized admin dashboard for managing secure connections between agents and both internal tools and third-party systems.

  • Pre-built connectors: Dropbox, Google Drive, SharePoint, Teams
  • Secure data access management
  • Admin control panel
  • Third-party MCP server support
  • Enterprise-grade security controls

📊 Evaluation & Optimization

Comprehensive tools for measuring and improving agent performance with automated testing and optimization.

  • Datasets for component testing
  • End-to-end trace grading
  • Automated prompt optimization
  • Third-party model evaluation support
  • Custom grading criteria

🔒 Security & Guardrails

Built-in security layers protecting against data leakage, jailbreaks, and unintended behaviors.

  • PII leak detection and prevention
  • Jailbreak protection
  • Content filtering
  • OpenAI’s standard security measures
  • Compliance-ready infrastructure

⚡ Performance

Optimized for rapid development and deployment with impressive benchmarks demonstrated at DevDay 2025.

  • Live demo: 2 agents built in <8 minutes
  • Hours to deploy vs months traditionally
  • Built on Responses API
  • Integration with GPT-5 Codex
  • Dynamic thinking time adjustment

🎯 Real-World Success Story

Ramp (Fintech): Built a complete procurement agent in just a few hours instead of months using AgentKit. Their teams reported a 70% reduction in iteration cycles, launching agents in two sprints rather than two quarters. Agent Builder enabled seamless collaboration between product, legal, and engineering teams on the same visual canvas.

🛠️ Dify – Core Features

🎯 Visual Workflow Builder

Intuitive canvas for building and testing AI workflows with comprehensive model support and visual orchestration.

  • Drag-and-drop workflow design
  • Support for 100+ LLM models
  • Real-time debugging with node inspection
  • Variable tracking during execution
  • Instant step-by-step testing

🧠 Comprehensive Model Support

Seamless integration with hundreds of proprietary and open-source LLMs from multiple providers.

  • OpenAI: GPT-3.5, GPT-4, GPT-5
  • Anthropic: Claude models
  • Open-source: Llama3, Mistral, Qwen
  • Self-hosted model support
  • Any OpenAI API-compatible model

📚 RAG Pipeline

Extensive Retrieval-Augmented Generation capabilities covering the entire document lifecycle.

  • Document ingestion from multiple formats
  • PDF, PPT, Word extraction
  • Vector database integration
  • Advanced retrieval strategies
  • Metadata-based filtering for security

🤖 Agent Node System

Flexible agent architecture with customizable strategies for autonomous decision-making within workflows.

  • Plug-in “Agent Strategies”
  • Autonomous task handling
  • Custom tool integration
  • Multi-agent collaboration
  • Dynamic workflow adaptation

🎛️ Prompt Engineering IDE

Intuitive interface for crafting, testing, and comparing prompts across different models.

  • Visual prompt editor
  • Model performance comparison
  • A/B testing capabilities
  • Text-to-speech integration
  • Template management

📊 Observability & Operations

Full visibility into AI application performance with comprehensive logging and monitoring.

  • Complete execution logs
  • Cost tracking per execution
  • Conversation auditing
  • Performance metrics dashboard
  • Version control for workflows

🏢 Enterprise Features

Production-ready infrastructure with enterprise-grade security and scalability.

  • Self-hosted deployment options
  • AWS Marketplace integration
  • Custom branding and white-labeling
  • SSO and access control
  • Multi-tenant architecture

🌐 Open Source Advantage

Community-driven development with transparent roadmap and extensive customization options.

  • 180,000+ developer community
  • 34,800+ GitHub stars
  • Regular feature updates
  • Community plugins and extensions
  • Full code access and customization

🎯 Real-World Success Story

Volvo Cars: Uses Dify for rapid AI validation and deployment, enabling teams to quickly design and deploy complex NLP pipelines. This approach significantly improved assessment product quality while reducing both cost and time to market. Dify’s democratized AI development allows even non-technical team members to contribute to AI initiatives.

⚖️ Detailed Comparison

Feature / Aspect OpenAI AgentKit Dify
Launch Date October 2025 (DevDay 2025) May 2023 (Established platform)
Source Model Proprietary, closed-source 100% open-source (GitHub)
Ecosystem OpenAI-exclusive (GPT models) Multi-provider (100+ LLMs from dozens of providers)
Deployment Options Cloud-based on OpenAI platform only Self-hosted, cloud, or hybrid deployment
Data Sovereignty Managed by OpenAI infrastructure Full control – host anywhere, complete data ownership
Model Support OpenAI models (GPT-3.5, GPT-4, GPT-5, Codex) GPT, Claude, Llama3, Mistral, Qwen, self-hosted models, any OpenAI-compatible API
Visual Builder ✓ Agent Builder (drag-and-drop, currently in beta) ✓ Visual workflow canvas (production-ready)
RAG Capabilities Limited documentation available Extensive: document ingestion, retrieval, PDF/PPT/Word extraction, vector databases, metadata filtering
Chat Interface ChatKit (embeddable, customizable) Built-in chat UI with full customization
Connectors Connector Registry (Dropbox, Drive, SharePoint, Teams, MCP servers) – Limited beta Extensive integration options, custom API connections, community plugins
Evaluation Tools Datasets, trace grading, automated prompt optimization, custom graders Full observability, debugging tools, version control, execution logs
Security Features PII detection, jailbreak protection, OpenAI security standards, guardrails Self-managed security, SSO, access control, custom security policies
Community Size New (launched Oct 2025), growing adoption 180,000+ developers, 59,000+ end users, 34,800+ GitHub stars
Pricing Model Included with standard API pricing, enterprise features for some components Free tier, Professional ($59/month), Team ($159/month), Enterprise (custom)
Development Speed Hours to build agents (demo showed <8 minutes for 2 agents) Rapid prototyping, established workflow templates
Customization Within OpenAI ecosystem constraints Unlimited – full code access, custom modifications possible
Learning Curve Low – designed for ease of use Low to medium – extensive documentation and community support
Best For OpenAI-committed teams, rapid prototyping, enterprise users wanting managed solution Multi-provider needs, data sovereignty requirements, open-source advocates, full customization
Production Readiness ChatKit & Evals: Generally available
Agent Builder: Beta
Connector Registry: Limited beta
Fully production-ready, battle-tested by 180,000+ developers
API Integration Built on OpenAI Responses API RESTful API, webhook support, extensive integration options

✅ Pros & Cons Analysis

OpenAI AgentKit

Advantages

  • Rapid Development: Build functional agents in hours rather than months with visual tools
  • Seamless Integration: Deep integration with OpenAI ecosystem and GPT models
  • Enterprise Security: Built-in guardrails, PII protection, and OpenAI security standards
  • Managed Infrastructure: No DevOps burden, fully managed by OpenAI
  • Cutting-Edge Models: Immediate access to latest GPT models and features
  • Live Demo Success: Proven capability (2 agents in <8 minutes)
  • Unified Toolkit: All necessary tools in one platform
  • Evaluation Tools: Comprehensive testing and optimization features

Limitations

  • Vendor Lock-in: Exclusively tied to OpenAI ecosystem
  • Limited Model Choice: Cannot use Claude, Llama, or other non-OpenAI models
  • New Platform: Just launched (Oct 2025), limited production track record
  • Beta Features: Key components still in beta (Agent Builder, Connector Registry)
  • No Data Sovereignty: Data managed by OpenAI, not self-hostable
  • Closed Source: Cannot inspect or modify underlying code
  • Pricing Uncertainty: Costs tied to OpenAI API pricing model
  • Limited Customization: Constrained by platform design decisions

Dify

Advantages

  • Open Source Freedom: Full code access, unlimited customization, no vendor lock-in
  • Multi-Provider Support: Use any LLM – GPT, Claude, Llama, Mistral, or self-hosted models
  • Data Sovereignty: Complete control over data, self-hosting options
  • Extensive RAG: Comprehensive document processing and retrieval capabilities
  • Large Community: 180,000+ developers, active development, extensive resources
  • Production Proven: Battle-tested since 2023, used by major companies like Volvo
  • Flexible Deployment: Cloud, self-hosted, or hybrid options
  • Cost Control: Use cheaper models or self-hosted options, transparent pricing
  • No Vendor Dependencies: Switch providers or models without platform changes

Limitations

  • DevOps Responsibility: Self-hosting requires infrastructure management
  • Learning Curve: More complex than managed solutions for beginners
  • No Native OpenAI Features: Latest OpenAI-specific features may lag
  • Security Setup: Must configure own security measures for self-hosted
  • Community Support: Relies on community vs dedicated support team
  • Integration Effort: May require more work to integrate custom tools
  • Scalability Management: Need to handle scaling for high-traffic scenarios

💡 Use Cases & Applications

OpenAI AgentKit – Ideal Use Cases

🏢 Enterprise Rapid Prototyping

Large organizations already invested in OpenAI wanting to quickly deploy AI agents across multiple departments without heavy technical overhead.

🚀 Startup MVPs

Startups needing to build and iterate on AI-powered products rapidly with minimal infrastructure investment and maximum speed to market.

💼 Business Process Automation

Companies automating internal workflows like procurement, customer support, or data analysis using OpenAI’s latest models.

🔬 Research & Development

Teams exploring cutting-edge AI capabilities with OpenAI’s latest models and wanting managed infrastructure for experiments.

Dify – Ideal Use Cases

🏦 Regulated Industries

Banking, healthcare, or government organizations requiring full data sovereignty, self-hosting, and complete audit trails.

🌐 Multi-Model Applications

Projects needing to leverage multiple LLM providers for cost optimization, feature diversity, or redundancy.

🛠️ Custom AI Solutions

Development teams building highly customized AI applications requiring deep integration with existing systems and workflows.

📚 Knowledge Management

Organizations building comprehensive RAG systems with complex document processing, vector search, and metadata filtering needs.

🎓 Educational & Research

Academic institutions and researchers needing transparent, customizable AI systems with full control over model selection and data.

🌍 Global Operations

International companies needing to deploy AI across multiple regions with varying data residency requirements.

💰 Pricing Comparison

OpenAI AgentKit Pricing

Model: Included with standard OpenAI API pricing. You pay for:

  • API calls to GPT models (token-based pricing)
  • Standard OpenAI usage fees apply
  • Enterprise features may have additional costs
  • Connector Registry requires Global Admin Console (available for Enterprise/Edu)

Advantage: No separate platform fee, but tied to OpenAI’s pricing

Consideration: Costs can scale significantly with high usage; no control over rate changes

Dify Pricing

Sandbox (Free):

  • 200 OpenAI calls included
  • Core features access
  • Ideal for testing and small projects

Professional ($59/month):

  • For independent developers & small teams
  • Production AI applications
  • Increased resources and team collaboration

Team ($159/month):

  • Medium-sized teams
  • Higher throughput requirements
  • Advanced collaboration features

Enterprise (Custom):

  • Custom deployment options
  • Dedicated support
  • SLA guarantees
  • On-premise or private cloud hosting

Self-Hosted (Free):

  • Deploy on your own infrastructure at no platform cost
  • Only pay for your chosen LLM provider (can use cheaper options)
  • Complete cost control

🎯 Decision Framework: Which Platform Should You Choose?

Choose OpenAI AgentKit If:

  • You’re already heavily invested in the OpenAI ecosystem
  • You want the fastest possible time-to-market with minimal setup
  • Your use case doesn’t require data to stay on-premise
  • You prefer managed infrastructure over self-hosting
  • You need the latest GPT models immediately upon release
  • Your team lacks DevOps resources for infrastructure management
  • Budget allows for OpenAI’s premium pricing model
  • You value tight integration over flexibility
  • Compliance allows cloud-based AI processing
  • You’re comfortable with platform limitations for ease of use

Choose Dify If:

  • You need to use multiple LLM providers or specific models
  • Data sovereignty and privacy are critical requirements
  • You want complete control over your AI infrastructure
  • Your organization requires self-hosted solutions
  • Cost optimization through model flexibility is important
  • You have DevOps capability for self-hosting
  • You need extensive RAG and document processing capabilities
  • Open-source transparency is a requirement
  • You want to avoid vendor lock-in
  • Your use case requires deep customization
  • You’re in a regulated industry (banking, healthcare, government)
  • You prefer community-driven development

🔮 Future Outlook & Roadmap

OpenAI AgentKit Roadmap

OpenAI plans to add standalone Workflows API and agent deployment options to ChatGPT. Expect rapid iteration and new features as the platform matures beyond beta stage.

Dify Development

Active open-source development with regular releases. Community-driven feature requests and transparent roadmap on GitHub. Continuous improvements to RAG, workflows, and integrations.

Market Competition

Both platforms face competition from LangChain, n8n, Zapier Central, and others. The AI agent space is rapidly evolving with new players entering regularly.

Convergence Trends

Expect features to converge over time as both platforms mature. Visual builders, multi-agent orchestration, and evaluation tools are becoming industry standards.

🎓 Final Recommendation

For most organizations: The choice depends on your priorities. If you value speed, simplicity, and are committed to OpenAI, AgentKit offers the fastest path to production agents. If you need flexibility, data control, and multi-provider support, Dify provides superior long-term value despite requiring more initial setup.

Hybrid Approach: Some organizations use AgentKit for rapid prototyping and Dify for production deployments where data sovereignty and model flexibility matter. This combines the speed of AgentKit with the control of Dify.

Last Updated: October 2025 | Based on OpenAI DevDay 2025 announcements

Sources: Official OpenAI documentation, Dify GitHub repository, TechCrunch, VentureBeat, Medium technical analyses

This comparison is for informational purposes. Features and pricing subject to change. Always consult official documentation for the most current information.

 

Building Intelligent AI Agents with OpenAI: From Raw API to Official Agents SDK

Introduction

Artificial Intelligence agents are revolutionizing how we interact with technology. Unlike traditional chatbots that simply respond to queries, AI agents can understand context, make decisions, and use tools to accomplish complex tasks autonomously. This project demonstrates how to build progressively sophisticated AI agents using both the OpenAI API and the official OpenAI Agents SDK.

Whether you’re a beginner exploring AI development or an experienced developer looking to integrate intelligent agents into your applications, this sample project provides practical, hands-on examples comparing two approaches: custom implementation using raw OpenAI API and using the official Agents SDK.

What is an AI Agent?

An AI agent is an autonomous system powered by a language model that can:

  • Understand natural language instructions
  • Make intelligent decisions about which tools to use
  • Execute functions to interact with external systems
  • Reason about results and provide meaningful responses
  • Collaborate with other agents to solve complex problems

Think of it as giving your AI assistant a toolbox. Instead of just talking, it can now check the weather, perform calculations, search databases, and much more.

Project Overview

The OpenAI AgentKit Sample Project demonstrates six levels of AI agent sophistication across two implementation approaches:

OpenAI API Approach (Custom Implementation)

1. Basic Agent

A foundational implementation showing how to set up OpenAI’s Chat Completions API.

What you’ll learn:

  • Setting up the OpenAI client
  • Configuring system and user messages
  • Managing model parameters (temperature, tokens)
  • Handling API responses

2. Agent with Tools

Introduces function calling where the agent decides when and how to use specific tools.

Available Tools:

  • Weather Tool: Retrieves current weather information
  • Calculator Tool: Performs mathematical operations
  • Time Tool: Gets current date and time across timezones

3. Advanced Agent

Production-ready example with sophisticated features including detailed logging, error handling, and multiple complex tools.

Enhanced Capabilities:

  • Wikipedia search integration
  • Sentiment analysis
  • Timezone-aware time retrieval
  • Comprehensive error handling
  • Performance statistics and logging

OpenAI Agents SDK Approach (Official Framework)

4. SDK Basic Agent

Simple agent using the official OpenAI Agents SDK with automatic agent loop and simplified API.

Key Features:

  • Uses Agent and run from @openai/agents
  • Automatic conversation management
  • Clean, minimal code

5. SDK Agent with Tools

Agent with tools using proper SDK conventions and automatic schema generation.

Tools:

  • Weather lookup with Zod validation
  • Mathematical calculations
  • Time zone support

Key Features:

  • Tools defined with tool() helper
  • Zod-powered parameter validation
  • Automatic schema generation from TypeScript types

6. SDK Multi-Agent System

Sophisticated multi-agent system with specialized agents and handoffs.

Agents:

  • WeatherExpert: Handles weather queries
  • MathExpert: Performs calculations
  • KnowledgeExpert: Searches knowledge base
  • Coordinator: Routes requests to specialists

Technology Stack

OpenAI API
GPT-4o-mini model for intelligent responses
@openai/agents
Official OpenAI Agents SDK
Zod
Runtime type validation and schema generation
Node.js
Runtime environment (22+ required for SDK)
Express.js
Web server framework
dotenv
Environment variable management

Getting Started

Prerequisites

Installation

1. Clone or download the project

cd openai-agentkit-sample

2. Install dependencies

npm install

This will install:

  • openai – Raw OpenAI API client
  • @openai/agents – Official Agents SDK
  • zod – Schema validation
  • Other dependencies

3. Configure environment variables

cp .env.example .env

Edit .env and add your OpenAI API key:

OPENAI_API_KEY=sk-your-actual-api-key-here

Running the Examples

Start the web server:

npm start

Open http://localhost:3000 in your browser

Run OpenAI API examples:

npm run example:basic      # Basic agent
npm run example:tools      # Agent with tools
npm run example:advanced   # Advanced agent

Run OpenAI Agents SDK examples:

npm run example:sdk-basic  # SDK basic agent
npm run example:sdk-tools  # SDK with tools
npm run example:sdk-multi  # Multi-agent system

Comparing the Two Approaches

OpenAI API (Custom Implementation)

Pros:

  • Full control over every aspect
  • Deep understanding of agent mechanics
  • Maximum flexibility
  • No framework constraints

Cons:

  • More code to write and maintain
  • Manual agent loop implementation
  • Manual tool schema definition
  • More error-prone

Example – Tool Definition (Raw API):

const weatherTool = {
  type: 'function',
  function: {
    name: 'get_weather',
    description: 'Get the current weather in a given location',
    parameters: {
      type: 'object',
      properties: {
        location: {
          type: 'string',
          description: 'The city and country',
        },
        unit: {
          type: 'string',
          enum: ['celsius', 'fahrenheit'],
        },
      },
      required: ['location'],
    },
  },
};
// Manual tool execution
function executeFunction(functionName, args) {
  switch (functionName) {
    case 'get_weather':
      return getWeather(args.location, args.unit);
    // ... more cases
  }
}

OpenAI Agents SDK (Official Framework)

Pros:

  • Less code, faster development
  • Automatic agent loop
  • Automatic schema generation from Zod
  • Built-in handoffs for multi-agent systems
  • Production-ready patterns
  • Type-safe with TypeScript

Cons:

  • Less control over internals
  • Framework learning curve
  • Tied to SDK conventions
  • Node.js 22+ requirement

Example – Tool Definition (Agents SDK):

import { tool } from '@openai/agents';
import { z } from 'zod';
const getWeatherTool = tool({
  name: 'get_weather',
  description: 'Get the current weather for a given location',
  parameters: z.object({
    location: z.string().describe('The city and country'),
    unit: z.enum(['celsius', 'fahrenheit']).optional().default('celsius'),
  }),
  async execute({ location, unit }) {
    // Tool implementation
    return JSON.stringify({ temperature: 22, condition: 'Sunny' });
  },
});
// Automatic execution - no switch statement needed!
const agent = new Agent({
  tools: [getWeatherTool],
});

Key Concepts

Function Calling / Tool Usage

Both approaches support function calling, where the AI model can “call” functions you define:

  1. Define tool: Describe function, parameters, and purpose
  2. Model decides: Model automatically decides when to use tools
  3. Execute tool: Your code executes the function
  4. Return result: Send result back to model
  5. Final response: Model uses result to create answer

OpenAI Agents SDK Advantages

The Agents SDK provides several powerful features:

Automatic Schema Generation:

// SDK automatically generates JSON schema from Zod!
z.object({
  city: z.string(),
  unit: z.enum(['celsius', 'fahrenheit']).optional(),
})

Agent Handoffs:

const coordinator = new Agent({
  handoffs: [weatherAgent, mathAgent, knowledgeAgent],
});
// Coordinator can automatically route to specialists

Built-in Agent Loop:

// SDK handles the entire conversation loop
const result = await run(agent, "What's the weather in Hanoi?");
console.log(result.finalOutput);

Practical Use Cases

Customer Service Automation

  • Answer questions using knowledge bases
  • Check order status
  • Process refunds
  • Escalate to human agents
  • Route to specialized agents

Personal Assistant Applications

  • Schedule management
  • Email drafting
  • Research and information gathering
  • Task automation
  • Multi-task coordination

Data Analysis Tools

  • Query databases
  • Generate reports
  • Perform calculations
  • Visualize insights
  • Collaborate across data sources

Best Practices

1. Clear Tool Descriptions

Make function descriptions detailed and specific:

Good:
description: 'Get the current weather including temperature, conditions, and humidity for a specific city and country'
Bad:
description: 'Get weather'

2. Use Zod for Validation (SDK)

parameters: z.object({
  email: z.string().email(),
  age: z.number().min(0).max(120),
  role: z.enum(['admin', 'user', 'guest']),
})

3. Error Handling

Always implement comprehensive error handling:

async execute({ city }) {
  try {
    const result = await weatherAPI.get(city);
    return JSON.stringify(result);
  } catch (error) {
    return JSON.stringify({ error: error.message });
  }
}

4. Tool Modularity

Create small, focused tools rather than monolithic ones:

// Good - specific tools
const getWeatherTool = tool({...});
const getForecastTool = tool({...});
// Bad - one giant tool
const weatherAndForecastAndHistoryTool = tool({...});

Multi-Agent Patterns

The Agents SDK excels at multi-agent workflows:

Specialist Pattern

const weatherExpert = new Agent({
  name: 'WeatherExpert',
  tools: [getWeatherTool],
});
const mathExpert = new Agent({
  name: 'MathExpert',
  tools: [calculateTool],
});
const coordinator = new Agent({
  handoffs: [weatherExpert, mathExpert],
});

Hierarchical Delegation

  • Coordinator receives user request
  • Analyzes which specialist is needed
  • Hands off to appropriate agent
  • Aggregates results
  • Returns unified response

API Endpoints

The project includes a web server with both approaches:

Raw API:

  • POST /api/chat/basic – Basic chat completion
  • POST /api/chat/with-tools – Manual tool handling

Agents SDK:

  • POST /api/chat/agents-sdk – SDK-powered agent with tools

When to Use Which Approach?

Use OpenAI API (Custom Implementation) When:

  • You need full control and customization
  • Learning how agents work at a low level
  • Implementing highly custom logic
  • Working with existing codebases
  • Framework constraints are a concern

Use OpenAI Agents SDK When:

  • Building production applications quickly
  • Need multi-agent workflows
  • Want type-safe tool definitions
  • Prefer less boilerplate code
  • Following best practices matters
  • Team collaboration is important

Performance Considerations

  • Model Selection: GPT-4o-mini offers great balance of capability and cost
  • Caching: Consider caching frequent queries
  • Async Operations: Use Promise.all() for parallel tool execution
  • Response Streaming: Implement for better UX
  • Rate Limiting: Monitor and manage API rate limits

Troubleshooting

Issue: “Invalid API Key”

  • Verify .env file contains correct API key
  • Check key is active in OpenAI dashboard

Issue: Tools Not Being Called

  • Ensure tool descriptions are clear and specific
  • Try more explicit user prompts
  • Check parameter schemas are correctly formatted

Issue: “Unsupported tool type”

  • Use tool() helper with Agents SDK
  • Ensure Zod schemas are properly defined
  • Check you’re importing from @openai/agents

Resources

Comparison Table

Feature Raw OpenAI API Agents SDK
Code Lines ~200 for basic agent with tools ~50 for same functionality
Schema Definition Manual JSON Automatic from Zod
Agent Loop Manual implementation Built-in
Type Safety Limited Full TypeScript support
Multi-Agent Manual implementation Built-in handoffs
Learning Curve Steep Moderate
Flexibility Maximum High
Production Ready Requires work Out-of-the-box
Node.js Requirement 18+ 22+

Conclusion

This project demonstrates two powerful approaches to building AI agents:

  1. Raw OpenAI API: Provides deep understanding and maximum control. Perfect for learning and custom implementations.
  2. OpenAI Agents SDK: Offers productivity, type safety, and production-ready patterns. Ideal for building real applications quickly.

Both approaches have their place. Start with the SDK for production work, but understanding the raw API approach gives you insights into how agents actually work.

Next Steps

  1. Experiment: Run all six examples
  2. Compare: Notice the differences in code complexity
  3. Customize: Create your own tools
  4. Integrate: Connect real APIs
  5. Deploy: Move to production with proper error handling
  6. Scale: Implement multi-agent systems for complex tasks

Contributing

Contributions, suggestions, and improvements are welcome! Feel free to:

  • Report issues
  • Submit pull requests
  • Share your custom tools
  • Suggest new examples

Demo

Github : https://github.com/cuongdvscuti/openai-agentkit-scuti

License

MIT License – Feel free to use this project for learning, development, or commercial purposes.


Ready to build your own AI agents?
Clone the repository, follow the setup instructions, and start with whichever approach fits your needs. The future of intelligent automation is in your hands!

Serverless generative AI architectural patterns – Part 1

As organizations explore how to embed generative AI capabilities into their applications, many are leveraging large language models (LLMs) for tasks like content generation, summarization, or natural language interfaces. However, designing these systems for scalability, cost-efficiency, and agility can be challenging.

This blog post (Part 1 of a two-part series) introduces serverless architectural patterns for building real-time generative AI applications using AWS services. It provides guidance on design layers, execution models, and implementation considerations.


📐 Separation of Concerns: A 3-Tier Design

To manage complexity and improve maintainability, AWS recommends separating your application into three distinct layers:


1. Frontend Layer – User Experience and Interaction

This layer manages user-facing interactions, including UI rendering, authentication, and client-to-server communication.

Tools and Services:

  • AWS Amplify: For rapid frontend development with built-in CI/CD.

  • Amazon CloudFront + S3: To host static sites securely and at scale.

  • Amazon Lex: To build conversational interfaces.

  • Amazon ECS/EKS: If using containerized web applications.


2. Middleware Layer – Integration and Control Logic

This is the central control hub and is subdivided into three critical sub-layers:

  • API Layer:

    • Interfaces via REST, GraphQL, or WebSockets.

    • Ensures secure, scalable access via API Gateway, AWS AppSync, or ALB.

    • Manages versioning, rate-limiting, authentication.

  • Prompt Engineering Layer:

    • Builds reusable prompt templates.

    • Handles prompt versioning, moderation, security, and caching.

    • Integrates with services like Amazon Bedrock, Amazon DynamoDB, and Amazon ElastiCache.

  • Orchestration Layer:

    • Manages session context, multi-step workflows, and agent-based processing.

    • Uses tools like AWS Step Functions, Amazon SQS, or event-driven orchestration frameworks such as LangChain or LlamaIndex.


3. Backend Layer – LLMs, Agents, and Data

This is where the actual generative AI models and enterprise data reside.

LLM Hosting Options:

  • Amazon Bedrock: Fully managed access to foundation models.

  • Amazon SageMaker: For training or hosting custom models.

  • Model Context Protocol (MCP): For containerized model servers.

For Retrieval Augmented Generation (RAG):

  • Amazon OpenSearch, Amazon Kendra, or Amazon Aurora PostgreSQL (pgVector) can index and retrieve relevant documents based on user queries.


⚡ Real-Time Execution Patterns

The article introduces three real-time architectural patterns to suit different UX and latency needs:


Pattern 1: Synchronous Request-Response

In this pattern, responses are generated and immediately delivered, while the client blocks/waits for response. Although this is simple to implement, has a predictable flow, and offers strong consistency, it suffers from blocking operations, high latency, and potential timeouts.

  • User sends a prompt, and the application returns a complete response.

  • Simple to implement and user-friendly for quick tasks.

  • Tradeoff: Limited by timeout constraints (e.g., API Gateway default 29s).

Use Cases:

  • Short-form responses

  • Structured data generation

  • Real-time form filling

 

This model can be implemented through several architectural approaches.

REST APIs

You can use RESTful APIs to communicate with your backend over HTTP requests. You can use REST or HTTP APIs in API Gateway or an Application Load Balancer for path-based routing to the middleware.

GraphQL HTTP APIs

You can use AWS AppSync as the API layer to take advantage of the benefits of GraphQL APIs. GraphQL APIs offer declarative and efficient data fetching using a typed schema definition, serverless data caching, offline data synchronization, security, and fine-grained access control.

Conversational chatbot interface

Amazon Lex is a service for building conversational interfaces with voice and text, offering speech recognition and language understanding capabilities. It simplifies multimodal development and enables publication of chatbots to various chat services and mobile devices.

Model invocation using orchestration

AWS Step Functions enables orchestration and coordination of multiple tasks, with native integrations across AWS services like Amazon API Gateway, AWS Lambda, and Amazon DynamoDB.

 


Pattern 2: Asynchronous Request-Response

This pattern provides a full-duplex, bidirectional communication channel between the client and server without clients having to wait for updates. The biggest advantages is its non-blocking nature that can handle long-running operations. However, they are more complex to implement because they require channel, message, and state management.

  • The request is submitted, and the response is delivered via polling or a callback.

  • Allows long-running operations without blocking client.

Implementation:

  • Uses services like Amazon SQS, SNS, or EventBridge.

  • Clients can poll or subscribe to notification mechanisms.

Use Cases:

  • Background processing

  • Multi-document summarization

  • Secure, queue-based workloads

 

This model can be implemented through two architectural approaches.

WebSocket APIs

The WebSocket protocol enables real-time, synchronous communication between the frontend and middleware, allowing for bidirectional, full-duplex messaging over a persistent TCP connection.

GraphQL WebSocket APIs

AWS AppSync can establish and maintain secure WebSocket connections for GraphQL subscription operations, enabling middleware applications to distribute data in real time from data sources to subscribers. It also supports a simple publish-subscribe model, where client frontends can listen to specific channels or topics


Pattern 3: Asynchronous Streaming Response

This streaming pattern enables real-time response flow to clients in chunks, enhancing the user experience and minimizing first response latency. This pattern uses built-in streaming capabilities in services like Amazon Bedrock

  • The client receives partial results as the model generates them.

  • Enhances user experience for chat interfaces and long-form text.

Implementation:

  • WebSocket APIs via API Gateway

  • Streaming through Amazon Bedrock

  • Lambda for function execution and streaming buffers

Use Cases:

  • Conversational AI

  • Live text generation

  • Code assistant interfaces

The following diagram illustrates the architecture of asynchronous streaming using API Gateway WebSocket APIs.

The following diagram illustrates the architecture of asynchronous streaming using AWS AppSync WebSocket APIs.

If you don’t need an API layer, Lambda response streaming lets a Lambda function progressively stream response payloads back to clients.


🧠 Choosing the Right Pattern

Each pattern serves different needs. When designing your system, consider:

  • Desired user experience (interactive vs. delayed)

  • Model latency and runtime

  • Infrastructure constraints (timeouts, resource limits)

  • API Gateway and Lambda service quotas

  • Security and compliance needs


🔜 What’s Next?

This article focused on real-time interactions. Part 2 will explore batch-oriented generative AI patterns—suitable for scenarios like document processing, analytics generation, and large-scale content creation.

OpenAI DevDay 2025: Cách Mạng Hóa Phát Triển Ứng Dụng AI

OpenAI DevDay 2025: Những Đột Phá Mới Trong Thế Giới AI

🚀 OpenAI DevDay 2025: Cách Mạng Hóa Phát Triển Ứng Dụng AI

📅 Sự kiện: 6 tháng 10, 2025 tại San Francisco

OpenAI DevDay 2025 đã mang đến những đột phá công nghệ AI ấn tượng với hơn 1,500 nhà phát triển tham dự và hàng chục nghìn người theo dõi trực tuyến. CEO Sam Altman đã công bố loạt tính năng mới làm thay đổi cách chúng ta xây dựng và triển khai ứng dụng AI.

800M+
Người dùng ChatGPT hàng tuần
4M+
Nhà phát triển
6B
Tokens/phút qua API

🎯 I. Tính Năng và Dịch Vụ Mới

1. ChatGPT Apps SDK – Ứng Dụng Tương Tác Trong ChatGPT

  • Apps in ChatGPT: Người dùng có thể chat trực tiếp với ứng dụng ngay trong giao diện ChatGPT mà không cần chuyển tab hay mở ứng dụng khác
  • Apps SDK: Công cụ phát triển mới dựa trên Model Context Protocol (MCP) – một chuẩn mở cho phép nhà phát triển xây dựng ứng dụng tương tác ngay trong ChatGPT
  • Đối tác ra mắt: Coursera, Canva, Zillow, Figma, Spotify, Expedia, Booking.com
  • Tính năng nổi bật: ChatGPT tự động gợi ý ứng dụng phù hợp trong cuộc trò chuyện, ví dụ khi bạn nói về lập kế hoạch du lịch, nó sẽ gợi ý Expedia
  • Monetization: Sắp có giao thức thương mại điện tử mới cho phép thanh toán ngay trong ChatGPT

2. AgentKit – Bộ Công Cụ Xây Dựng AI Agent Chuyên Nghiệp

  • Agent Builder: Giao diện kéo thả trực quan để thiết kế workflow cho AI agent mà không cần code phức tạp
  • ChatKit: Giao diện chat có thể tích hợp vào ứng dụng hoặc website của bạn, hỗ trợ streaming responses, quản lý threads, hiển thị quá trình suy nghĩ của model
  • Connector Registry: Bảng điều khiển tập trung để quản lý kết nối dữ liệu với Dropbox, Google Drive, SharePoint, Microsoft Teams
  • Guardrails: Lớp bảo mật mã nguồn mở giúp bảo vệ agent khỏi hành vi không mong muốn, có thể che PII, phát hiện jailbreaks
  • Enhanced Evals: Công cụ đánh giá nâng cao với datasets, trace grading, tối ưu prompt tự động, hỗ trợ các model của bên thứ ba
  • Demo trực tiếp: Tại sự kiện, một kỹ sư OpenAI đã xây dựng một AI agent hoàn chỉnh chỉ trong 8 phút

3. GPT-5 Pro – Model AI Thông Minh Nhất Trong API

  • Khả năng suy luận: Đạt trình độ PhD trong các lĩnh vực khoa học, có khả năng suy luận sâu cho các tác vụ phức tạp
  • Độ chính xác cao: Đặc biệt phù hợp cho tài chính, pháp lý, y tế – các lĩnh vực đòi hỏi độ chính xác cao
  • Reasoning effort: Có 4 mức độ suy luận (minimal, low, medium, high) để cân bằng giữa tốc độ và chất lượng
  • Context window: 272,000 tokens cho input, 128,000 tokens cho output
  • Multimodal: Hỗ trợ text và image cho input, text cho output

4. Codex – AI Agent Lập Trình Chính Thức Ra Mắt

  • GPT-5 Codex Model: Phiên bản GPT-5 được huấn luyện đặc biệt cho coding và agentic workflows
  • Tích hợp Slack: Lập trình viên có thể giao việc hoặc đặt câu hỏi trực tiếp từ Slack channels
  • Codex SDK: Cho phép tự động hóa code review, refactoring, automated testing
  • Thống kê ấn tượng:
    • Số lượng tin nhắn tăng 10x kể từ khi ra mắt tháng 8/2025
    • Đã xử lý hơn 40 trillion tokens
    • Nội bộ OpenAI: 70% pull requests nhiều hơn mỗi tuần

5. Sora 2 – Video Generation Trong API

  • Kiểm soát nâng cao: Có thể chỉ định độ dài, tỷ lệ khung hình, độ phân giải
  • Audio đồng bộ: Tạo video với âm thanh đầy đủ, âm thanh môi trường, hiệu ứng được đồng bộ với hình ảnh
  • Remix video: Cho phép chỉnh sửa và remix video đã tạo
  • Giá cả:
    • Sora-2: $1.00 cho video 10 giây độ phân giải tiêu chuẩn
    • Sora-2-pro: $5.00 cho video 10 giây độ phân giải cao

6. Mini Models – Tiết Kiệm Chi Phí

Model Chức năng Tiết kiệm
gpt-realtime-mini Voice interaction real-time 70% rẻ hơn large model
gpt-image-1-mini Tạo hình ảnh 80% rẻ hơn large model

7. Giá Cả GPT-5 Cạnh Tranh

Loại Input Output
GPT-5 $1.25/1M tokens $10/1M tokens
So với Claude Opus 4.1 $15/1M tokens $75/1M tokens

✨ II. Những Điểm Nổi Bật Đáng Chú Ý

🎯 Dễ Dàng Hơn Bao Giờ Hết

Dân chủ hóa phát triển phần mềm: Sam Altman đã kể câu chuyện về một cụ ông 89 tuổi người Nhật tự học lập trình với ChatGPT và đã tạo ra 11 ứng dụng iPhone dành cho người cao tuổi. Đây là minh chứng cho tầm nhìn “bất kỳ ai có ý tưởng đều có thể xây dựng ứng dụng cho chính mình”.

⚡ Tốc Độ Phát Triển Chưa Từng Có

“Phần mềm từng mất hàng tháng hoặc hàng năm để xây dựng. Giờ đây bạn thấy nó có thể được tạo ra chỉ trong vài phút với AI. Bạn không cần một đội ngũ lớn. Bạn chỉ cần một ý tưởng hay và có thể biến nó thành hiện thực nhanh hơn bao giờ hết.” – Sam Altman

🔒 Bảo Mật và Quản Trị Doanh Nghiệp

  • Content Shield: OpenAI cung cấp bảo vệ bản quyền cho doanh nghiệp
  • Global Admin Console: Quản lý domains, SSO, nhiều API organizations
  • Guardrails: Bảo vệ dữ liệu nhạy cảm và ngăn chặn hành vi độc hại

🤝 Hợp Tác Chiến Lược

AMD Partnership: OpenAI công bố hợp tác chiến lược với AMD để triển khai 6 gigawatts GPU Instinct của AMD trong nhiều năm tới, với warrant lên đến 160 triệu cổ phiếu AMD.

🌟 III. Tác Động và Ý Nghĩa

1. Đối Với Nhà Phát Triển

  • Giảm thời gian phát triển: Từ nhiều tháng xuống còn vài phút nhờ các công cụ như AgentKit và Codex
  • Chi phí thấp hơn: GPT-5 rẻ hơn 50% so với GPT-4o ở input, các mini models tiết kiệm 70-80%
  • Phân phối rộng rãi: Tiếp cận ngay 800 triệu người dùng ChatGPT qua Apps SDK
  • Developer lock-in thấp hơn: MCP là chuẩn mở, giúp dễ dàng chuyển đổi giữa các nền tảng

2. Đối Với Doanh Nghiệp

  • Tăng năng suất: AI agents có thể tự động hóa quy trình phức tạp từ customer support đến sales operations
  • Giảm headcount: Đội nhỏ có thể làm việc của đội lớn nhờ AI, tiết kiệm chi phí nhân sự
  • Cạnh tranh công bằng: Startup có thể cạnh tranh với đại gia nhờ chi phí thấp và công cụ dễ tiếp cận
  • Quản trị và bảo mật: Connector Registry và Guardrails giúp quản lý dữ liệu tập trung và đảm bảo compliance

3. Đối Với Người Dùng Cuối

  • Trải nghiệm liền mạch: Không cần chuyển đổi giữa nhiều ứng dụng, mọi thứ trong một giao diện ChatGPT
  • Cá nhân hóa cao: AI agents có thể học và thích nghi với nhu cầu cá nhân
  • Sáng tạo nội dung dễ dàng: Sora 2 cho phép tạo video chất lượng cao chỉ với mô tả text
  • Học tập và phát triển: Tích hợp Coursera giúp học tập cá nhân hóa ngay trong ChatGPT

4. Tác Động Ngành

Cuộc chiến giá cả AI: Với giá GPT-5 Pro rẻ hơn đáng kể so với Claude Opus 4.1 (rẻ hơn 92% ở input, 86% ở output), OpenAI đang tạo áp lực giá lên toàn ngành.

Platform Play: ChatGPT không còn là chatbot đơn thuần mà đang trở thành một nền tảng – giống như App Store của Apple. Điều này có thể thay đổi cách phân phối ứng dụng AI.

Democratization of AI: Với công cụ visual như Agent Builder, người không biết code cũng có thể tạo AI agents phức tạp, mở rộng đáng kể cộng đồng AI builders.

Chuyển dịch từ Answers đến Actions: ChatGPT đang chuyển từ trả lời câu hỏi sang thực hiện hành động, đánh dấu bước tiến mới trong phát triển AI.

5. Xu Hướng Tương Lai

  • AI như một Operating System: ChatGPT đang tiến đến việc trở thành một hệ điều hành AI – nơi tập trung apps, agents và users
  • Agentic AI: Từ việc chỉ trả lời câu hỏi, AI giờ có thể nhận và hoàn thành các tác vụ phức tạp end-to-end
  • Multimodal Everything: Tích hợp text, image, audio, video trong một platform duy nhất
  • Device Ecosystem: Với sự tham gia của Jony Ive và thương vụ mua io ($6.4B), OpenAI đang hướng đến việc tạo ra thiết bị AI riêng

🚀 Kết Luận

OpenAI DevDay 2025 không chỉ là sự kiện công bố sản phẩm mà là tuyên ngôn về tương lai của phát triển phần mềm. Với Apps SDK, AgentKit, GPT-5 Pro, và Sora 2, OpenAI đang xây dựng một hệ sinh thái AI toàn diện – từ nền tảng phát triển cho đến trải nghiệm người dùng cuối.

Thông điệp chính: “Bất kỳ ai có ý tưởng tốt đều có thể biến nó thành hiện thực nhanh hơn bao giờ hết”. Đây không chỉ là slogan marketing mà là tầm nhìn về một thế giới mà AI dân chủ hóa việc sáng tạo phần mềm.

Với 800 triệu người dùng, 4 triệu nhà phát triển và 6 tỷ tokens được xử lý mỗi phút, OpenAI không chỉ dẫn đầu cuộc đua AI mà đang định hình lại cách chúng ta tương tác với công nghệ.

Nguồn tham khảo:

  • OpenAI DevDay Official: openai.com/devday/
  • Sam Altman Keynote Livestream
  • OpenAI Blog và Documentation
  • CNBC, TechCrunch Coverage

Chrome DevTools MCP – Khi AI Browser Biết Debug, Chu Trình Phát Triển Được Hoàn Thiện

Các công cụ AI như ChatGPT, Copilot, Claude hay Cursor hiện nay có thể viết code rất nhanh, thậm chí tạo nguyên một giao diện chỉ với vài dòng mô tả.
Nhưng chúng vẫn có một điểm mù rất lớn:
👉 Chúng không nhìn thấy trang web thực tế đang chạy.

Điều đó có nghĩa là, AI có thể viết code HTML/CSS/JS, nhưng không biết nút có nằm đúng chỗ không, form có lỗi console không, hay website có chạy chậm không.
Tất cả phần kiểm tra, test, debug… vẫn phải do con người làm.

Và đó chính là điều Chrome DevTools MCP muốn thay đổi.


⚙️ Chrome DevTools MCP là gì?

MCP (Model Context Protocol) là một giao thức mới của Google, cho phép AI có thể “kết nối” trực tiếp với các công cụ phát triển – như Chrome DevTools – để quan sát và tương tác với trình duyệt thật.

Nói đơn giản:

Nếu trước đây AI chỉ “đoán” xem code chạy ra sao, thì giờ đây nó có thể “mở Chrome, xem kết quả thật, đọc log, và tự sửa lỗi”.

Với Chrome DevTools MCP, một AI agent có thể:

  • Mở một trang web và xem console log

  • Phân tích hiệu suất tải trang (load chậm ở đâu, hình ảnh nào quá nặng…)

  • Tự chạy thử hành động người dùng: click, nhập form, chuyển trang

  • Phát hiện lỗiđề xuất cách sửa

Tất cả diễn ra trong một vòng lặp tự động — gần như một lập trình viên đang ngồi test website.


🔍 Cách Chrome DevTools MCP hoạt động (hiểu đơn giản thôi)

MCP hoạt động như một “người phiên dịch” giữa AIChrome.

  • Khi AI muốn kiểm tra website, nó gửi yêu cầu đến MCP server.

  • MCP dùng Chrome DevTools Protocol để điều khiển Chrome thật: mở tab, đọc DOM, xem console, lấy dữ liệu mạng…

  • MCP sau đó trả kết quả lại cho AI để phân tích.

Ví dụ thực tế:

AI có thể yêu cầu “Mở trang example.com, xem có lỗi JavaScript nào trong console không, và nếu có thì sửa code CSS/JS cho đúng.”


🚀 Lợi ích mang lại

1️⃣ AI không còn “đoán mò”

Trước đây AI viết code dựa vào kinh nghiệm huấn luyện, chứ không biết kết quả thực tế.
Giờ đây, nó thấy được lỗi, đọc được log, biết website load chậm ở đâu, và có thể tự học từ đó.

2️⃣ Giảm thời gian debug cho developer

Thay vì “viết – chạy – sửa – reload” thủ công, AI có thể tự kiểm tra và gợi ý fix ngay sau khi sinh code.

3️⃣ Website nhanh và ổn định hơn

AI có thể tự đánh giá hiệu suất (Core Web Vitals, LCP, CLS…) và đề xuất tối ưu: nén ảnh, lazy-load, tối ưu script…

4️⃣ Tạo nền tảng cho “AI browser” tương lai

Những trình duyệt như Arc, Brave, hoặc Chrome AI hoàn toàn có thể tích hợp MCP để cho phép AI tự test và sửa trang web ngay trong trình duyệt.


🧩 Hướng dẫn nhanh để thử MCP

⚠️ MCP vẫn đang ở giai đoạn thử nghiệm (preview), nên có thể lỗi nhẹ.
Dưới đây là hướng dẫn dành cho những ai muốn khám phá:

Cách cài đặt:

# Cần Node 22+
nvm install 22
nvm use 22

# Clone bản mới nhất
git clone https://github.com/ChromeDevTools/chrome-devtools-mcp.git
cd chrome-devtools-mcp

# Cài và build
npm install
npm run build

# Chạy server
node build/src/index.js

Nếu bạn thấy dòng:

Chrome DevTools MCP server listening on port 4000

→ Là thành công! 🎉

Bây giờ, bạn có thể kết nối AI (như Claude, Gemini, hoặc Cursor) tới server MCP này để thử nghiệm các lệnh như:

  • “Kiểm tra lỗi console trên trang web này.”

  • “Phân tích lý do vì sao trang load chậm.”

  • “Chụp ảnh màn hình trang và mô tả bố cục.”


⚠️ Một vài thách thức

  • MCP hiện chỉ hoạt động với Chrome / Chromium.

  • Cần Node 22+ (phiên bản cũ sẽ lỗi).

  • Một số lệnh DevTools chưa được hỗ trợ đầy đủ.

  • Khi chạy cần đảm bảo bảo mật dữ liệu, vì AI có thể truy cập nội dung trang web.


🌈 Tương lai: AI Developer thật sự đang đến gần

Chrome DevTools MCP đánh dấu bước tiến lớn trong việc “AI hóa” toàn bộ chu trình phát triển phần mềm.

Trước đây, AI chỉ viết code.
Giờ đây, AI viết – kiểm tra – phân tích – sửa lỗi – tối ưu.
Một chu trình phát triển trọn vẹn.

Không xa nữa, chúng ta có thể tưởng tượng ra:

  • Một AI browser có thể tự chẩn đoán lỗi web.

  • Một AI tester tự động tạo và chạy test case thực tế.

  • Và thậm chí, một AI developer có thể deploy web mà không cần mở DevTools bằng tay.


✨ Kết luận

Chrome DevTools MCP không chỉ là một công cụ debug mới — mà là bước khởi đầu của kỷ nguyên AI Developer thực thụ.
Với khả năng quan sát, thử nghiệm và phản hồi trong môi trường thật, AI không chỉ là “người viết code”, mà dần trở thành “người đồng hành” trong cả quá trình phát triển.

AgentKit vs Dify: A Comprehensive Analysis for AI Agent Development

I. Introduction

In the rapidly evolving landscape of AI agent development, two prominent platforms have emerged as key players: AgentKit by OpenAI and Dify as an open-source alternative. This comprehensive analysis explores their capabilities, differences, and use cases to help developers and businesses make informed decisions.

II. What is AgentKit?

AgentKit is OpenAI’s comprehensive toolkit for building AI agents, designed to provide developers with the tools and infrastructure needed to create sophisticated AI-powered applications. It represents OpenAI’s vision for the future of AI agent development, offering both foundational components and advanced capabilities.

Core Components

  • Agent Builder: Visual interface for creating and configuring AI agents
  • ChatKit: Pre-built chat interfaces and conversation management
  • Connector Registry: Library of pre-built integrations with popular services
  • Evals: Comprehensive evaluation framework for testing agent performance
  • Guardrails: Safety and compliance tools for production deployments

III. What is Dify?

Dify is an open-source platform that enables users to build AI applications without extensive coding knowledge. It focuses on providing a visual, user-friendly interface for creating AI-powered workflows and applications.

Key Features

  • Visual Workflow Builder: Drag-and-drop interface for creating AI workflows
  • Multi-Model Support: Integration with various AI models and providers
  • Template Library: Pre-built templates for common use cases
  • API Management: RESTful APIs for integration

IV. Detailed Comparison: AgentKit vs Dify

Feature AgentKit Dify
Target Audience Developers & Enterprises Non-technical users & Startups
Learning Curve Steep (requires coding knowledge) Gentle (visual interface)
Customization Level High (full code control) Medium (template-based)
Integration Depth Deep API integration Surface-level integration
Scalability Enterprise-grade Small to medium projects
Cost Model Usage-based pricing Open-source + hosting costs
Support Enterprise support Community-driven
Deployment Cloud-first Self-hosted or cloud
Security Built-in enterprise security Basic security features
Performance Optimized for production Suitable for prototyping

Table 1: Feature Comparison Overview

V. Technical Implementation Comparison

Architecture and Deployment

Aspect AgentKit Dify
Architecture Microservices, cloud-native Monolithic, containerized
Deployment OpenAI cloud platform Self-hosted or cloud
Scaling Auto-scaling, enterprise-grade Manual scaling, limited
Monitoring Advanced analytics and logging Basic monitoring
Backup Automated, enterprise backup Manual backup solutions

Table 2: Architecture and Deployment Comparison

Security and Compliance

Security Feature AgentKit Dify
Authentication Enterprise SSO, MFA Basic auth, OAuth
Data Encryption End-to-end encryption Basic encryption
Compliance SOC 2, GDPR, HIPAA Basic compliance
Audit Logging Comprehensive audit trails Limited logging
Access Control Role-based, fine-grained Basic permission system

Table 3: Security and Compliance Comparison

Performance and Optimization

Metric AgentKit Dify
Response Time < 100ms (optimized) 200-500ms (standard)
Throughput 10,000+ requests/second 1,000 requests/second
Concurrent Users Unlimited (auto-scaling) Limited by infrastructure
Uptime 99.9% SLA Depends on hosting
Caching Advanced caching strategies Basic caching

Table 4: Performance and Optimization Comparison

VI. Cost and ROI Analysis

AgentKit Cost Analysis

Initial Costs

  • Setup and configuration: $5,000 – $15,000 USD
  • Team training: $10,000 – $25,000 USD
  • Integration development: $20,000 – $50,000 USD

Monthly Operating Costs

  • API usage: $0.01 – $0.10 USD per request
  • Enterprise support: $2,000 – $10,000 USD/month
  • Infrastructure: $1,000 – $5,000 USD/month

ROI Timeline: 6-12 months for enterprise projects

Dify Cost Analysis

Initial Costs

  • Setup: $0 USD (open source)
  • Basic configuration: $500 – $2,000 USD
  • Custom development: $2,000 – $10,000 USD

Monthly Operating Costs

  • Hosting: $100 – $1,000 USD/month
  • Maintenance: $500 – $2,000 USD/month
  • Support: Community-based (free)

ROI Timeline: 1-3 months for small projects

VII. Getting Started (Terminal Walkthrough)

The following screenshots demonstrate the complete setup process from scratch, showing each terminal command and its output for easy replication.

Step 1 — Clone the repository

Shows the git clone command downloading the AgentKit sample repository from GitHub with progress indicators and completion status.

Step 2 — Install dependencies

Displays the npm install process installing required packages (openai, express, cors, dotenv) with dependency resolution and warnings about Node.js version compatibility.

Step 3 — Configure environment (.env)

Demonstrates creating the .env file with environment variables including OPENAI_API_KEY placeholder and PORT configuration.

Step 4 — Run the server

Shows the server startup process with success messages indicating the AgentKit sample server is running on localhost:3000 with available agents and tools.

Step 5 — Verify health endpoint

Displays the API health check response using PowerShell’s Invoke-WebRequest command, showing successful connection and server status.

Step 6 — Verify port (optional)

Shows netstat command output confirming port 3000 is listening and ready to accept connections.

VIII. Demo Application Features

The following screenshots showcase the key features of our AgentKit sample application, demonstrating its capabilities and user interface.

Main Interface

Shows the main application interface with agent selection dropdown, tools toggle, chat messages area, and input section with modern gradient design.

Agent Switching

Demonstrates switching between different agent types (General, Coding, Creative) with dynamic response styles and specialized capabilities.

Tool Integration

Shows the calculator tool in action, displaying mathematical calculations with formatted results and tool usage indicators.

Conversation Memory

Illustrates conversation history and context awareness, showing how the agent remembers previous interactions and maintains coherent dialogue.

Mobile Responsive

Displays the mobile-optimized interface with responsive design, touch-friendly controls, and adaptive layout for smaller screens.

Error Handling

Shows graceful error handling with user-friendly error messages, retry options, and fallback responses for failed requests.

IX. Conclusion

Key Takeaways

  • AgentKit is ideal for enterprise applications requiring high performance, security, and scalability
  • Dify is perfect for rapid prototyping, small projects, and teams with limited technical expertise
  • Both platforms have their place in the AI development ecosystem
  • Choose based on your specific requirements, team capabilities, and budget constraints

The choice between AgentKit and Dify ultimately depends on your specific needs, team capabilities, and project requirements. AgentKit offers enterprise-grade capabilities for complex, scalable applications, while Dify provides an accessible platform for rapid development and prototyping.

As the AI agent development landscape continues to evolve, both platforms will likely see significant improvements and new features. Staying informed about their capabilities and roadmaps will help you make the best decision for your projects.

This analysis provides a comprehensive overview to help you choose the right platform for your AI agent development needs. Consider your specific requirements, team capabilities, and long-term goals when making your decision.